
Aristo Tacoma

ROBOTIC GOAL SORTING

The Art of Thinking series

Volume 4 of 5



Aristo Tacoma

ROBOTIC GOAL SORTING

The Art of Thinking series

Volume 4 of 5



BOOK INFORMATION
Relevant G15 PMN apps for this book:
# 1005768 and # 1005769 and other apps
at norskesites.org/fic5
as well as at g15pmn.com
ISBN 978-82-93128-05-2
Published by Yoga4d von Reusch Gamemakers,
www.yoga6d.org
First published in 2024, first edition.
Copyright the author
Aristo Tacoma who is Stein H Reusch;
other pen names include Stein von Reusch,
Henning Braten, Stein H Braten Reusch,
and S.R.Weber--these other pen names all
family-name derived.
Redistribution of this text in respectful
contexts permitted, when text is kept
unchanged, whole, and not added to; and this
notice is part of the reproduction.
As background reading, consult, at yoga6d.org/library:
* the first three volumes in this series
* the super-model-theory.pdf from 2017, physics, and
its earlier form in this text:
* yoga4d_org_a_htm.pdf from 2004, which
is also at yoga4d.org/a.htm, an early text on physics
and numbers published in 2004/2005 on paper;
both at he National Library Library of Norway
and by this author. In addition, it is good to
read back and forth in the documentation that
comes along with G15 PMN app #3,333,333, ie,
the Third Foundation, at h33 and k33 there,
as well as the examples, in order to keep in
mind the FCM-relevant numbers.
Published by Yoga4d von Reusch Gamemakers,
Norway.
Book is printed on paper and is also
available at yoga6d.org/library



FOR NEW READERS:
This is the fourth volume in a five-volume
series, "Art of Thinking". As part of this
writer's journey into the theme of the art
of thinking over many years, and work with
mathematical logic, a sort of essence idea
of the Personal Computer was shaped on the
logical/conceptual level and expressed in
terms of a CPU design (a CPU made in the
mind, as a terminology and instruction set,
and not yet, at the time of writing this
book, in terms of electronics or chips).
This was called G15. Along with it went a
definition of the surrounding hardware, in
a concrete and boundary-aware manner
inspired by the logical work. Gradually an
effortless programming language was built
using only G15 instructions, called PMN.
The first G15 PMN 'practical virtual
implementation' was ready in 2012, and by
2017, a form of physics, called Super
Model Theory, was formulated in a book
centered on G15 PMN (see references in
book information above. The G15 PMN is
not dependent on typical hierarchical
concepts such as 'files' and 'folders'.
In short, it acts as if it is an OS, an
Operating System for computers. In a
certain sense, it is a world onto its own.
In another, and practical/contemporary
sense, it runs happily on mostly all
commercial and noncommercial platforms,
and interacts eminently with robotic
hardware in a two-way realtime sense; and
can be used for currency trading
calculations with its G15 PMN FCM
Spreadsheet, for writing, for graphics
work, and above all, to stimulate the
human mind, our minds, to think even
better by being a language near to thought
through which we can express our inmost
concepts in a way that is complementary
to natural language and free from the
conceptual issues plaguing mathematical
logic at the foundations.



NOTATION OF FORMAL CODE
In contast to the previous three volumes
in this series, beginning with this
volume, we'll put all code in uppercase
except variables such as 'i1' and 'i5'
where the uppercase, in some fonts,
resembles the digit 1. Capital letters
are fairly similar to the formal notation
inside the G15 PMN platform and the
sense is that readability of the code
is enhanced by allowing it to stand out
from the rest of the text that way.



*WELCOME TO A.O.T. VOLUME 4, ROBOTIC GOAL SORTING*
Also in this volume, of course, will our Art of Thinking
explorations go into delightfully non-technical themes.
But we also have some [correction: MUCH, inserted after
getting to the completing chapter] technical work to do!]
  In terms of my own writing, the book starts out just
after completing app# 1005768 and, in addition to all the
after all very extensive series of philosophical musings,
sets out to depict the actual thinking process and G15 PMN
formalism, or "coding" as we can abbreviate it, for some
800 permille or more of the app# 1005769.
  The first three volumes of this series was a summing up,
for me, of work done over a long time, in which the
principal machinery was the Personal Computer. By it, the
programming language G15 PMN was developed, then refined,
and in these three volumes, one of the tasks was to
express how to use this language. Another task was to
prepare the ground for the coupling of the PC to motors
and other machinery 'out there', in the world around the
PC, in other words, to robotic things, so that an
understanding of G15 PMN as also a way to meaningfully
drive robots--and even build them--would emerge. At the
point of completing volume 3, the books were, as far as
the development of G15 PMN and robotics is concerned,
up-to-date with regard to where I had got with these
developments. Between the third volume and this, the
fourth, I've had the opportunity to spend lots and lots of
time with various robotic elements, and to experiment with
how they might possibly connect to a personal computer;
and this includes some experimentation with electronics.

This is a five-volume series, and as the first three
volumes indicates, the fourth volume was supposed to be
about robots very concretely, while the fifth going a bit
beyond such themes, and include also such as a bit of EEG
brain research. The title of this fourth volume, Robotic
Goal Sorting, was decided long ago. Put simply, if we have
got some wheels of some sort with motors, and some arm-
like elements also with motors (or 'servos' as slow-
moving motors typically with a movement range typically
indicate by such as '0 to 360 degrees' are also called),
and usually also some hand-like elements (or 'gripper'),
and a couple of cameras near all this, and we have a way
in which a program can send signals to all the motors and
receive data from the cameras, then what makes this into a
useful robot is that the signals sent work out coherently
so as to get tasks done, usually with pretty strong
guidance from also the data that the cameras bring home.
  For a task to be coherently done in such a setup, the
signals must be orderly and respect the physical features
of the situation, and part of this order is sequence; and
part of the sequence involves the concept that each task
usually have several subtasks, and that this division can
go on for quite a while. For instance, to lift a cup of
coffee involves the subtask of gripping the cup, followed,
in sequence, by another subtask of lifting it. And this
can itself be a subtask of a larger task entitled, 'fetch
a cup of coffee to the human master' :)



  If the lifting-signal comes before the gripping-signal,
neither the gripping nor the lifting will make coherent
sense. So sequence is essential. This sequence, or, in
other words, this 'sort', involves the concept of subtasks
--or 'goals'--very intensely. The very concept of the
robot begins to emerge as distinct from merely a wiring of
motors and cameras to a PC by robotic goal sorting taking
place inside the PC, correlating data from input sources
like cameras to sort as correctly as can be, the goals
that are then eventually translated into so low-level
subtasks that they correspond to electric signals to the
motors.
  In other words, the very concept of the robot is a human
concept intrinsically tied up to the equally human concept
of the task. There need be no assumption of mindfulness
for the robot as such; rather, we assume that the human
being in charge of, first, the programming and wiring
process is mindful, and then the human beings in charge of
putting the robot to use also are mindful. It is by their
coherent understanding of what is to be meaningfully done
in this world that the robot comes in as a solution,
making it less necessary for human beings to have to
indulge in tasks that are less rewarding to do.

In an ideal society, of course, goods are fairly equally
available for every citizen, and robots are their helpers
and in many cases their slaves, and also do background
work like overly repetitive factory work; allowing human
beings to go to beach etc and put in a moderate amount of
labor hours each day instead of having to sweat one's life
out on a dehumanizing factory job to the benefit of an
elite of bosses who, apart from doing some office hours to
enforce their unethical rule, can party all day long.
Neither marxism nor capitalistic democracy nor any of the
attempted forms of fascism or socialdemocracy has proven
to solve this. But it is no point sticking one's head in
the sand and pretend robots aren't existing; robots might
make an unethical rule worse, but they may also make an
ethical rule better; and what we can do as programmers is
to insist that we do robotics on an as ethical foundation
as possible, through and through.

And as we have indicated, it must be part of our ethics,
while intending that the resulting robotic setup and
program shall be a good expression of a coherent mind,
indeed a first-hand expression--and in that sense have a
degree of 'computerized mentality'--to avoid implying that
there is some independent nonhuman intelligence or mind or
mindfulness in a robot, or a piece of software. In short,
those who speak of 'artificial intelligence' really speak
of intelligence in a phony sense, a 'fake intelligence'.
This as intuition and insight, and logical argument as
well--also inspired by Goedel's Second Incompleteness
Theorem, runs through every aspect of G15 PMN, of course.

But to return to the progress of these volumes, it was
always the intent that the fourth volume in this Art of
Thinking series was going to handle robots concretely, not
merely as visualized as activated through software. For
that reason, I have, as said, worked much with robotic
elements, trying, at most points, to avoid working with
too-ready-made components by others, so that the sense in
which the PC (and not eg a piece of software stored via
machine code on a chip on an electronics card inside a
robotic piece of machinery) is actually the center of the
robot is a real one.



So, in short, every sort of relevant subtask machinery has
been experimented with the past few years; I have, since
completing volume 3, had various constructions going, with
this sort of robotic 'arm' and that sort, this sort of
robotic 'hand' and that sort, this sort of wheels and that
sort of wheels, and used a variety of electronics controls
--and in every occasion used G15 PMN to control these. As
part of the process, I have also experimented with a range
of mechanisms for making sense of what comes into the
camera, in a way that doesn't chew up all the resources of
a 32-bit PC. I am satisfied, and this is also expressed at
the start of this book writing of this Volume 4, that the
foundation ideas are in place and that the essential G15
PMN program components are in place, and these are also
expressed at norskesites.org/fic5. The plan now is this:
to create a description of how these foundations should be
called on in a framework of finished FCM programs. Let me
add here, for completeness sake, that the robotic pattern
matching software components proposed in volume 3 have
been exceedingly useful in inspiring further developments;
and it is these further developments, rather than the
exact apps made in the course of volume 3, that will be
discussed here.

When the discussion of these components, and whatever
philosophical, psychological or lifestyle theme we'll also
bring in, is complete in this volume 4, the volume 5, in
this updated plan we now make for the two completing
volumes of this five-volume book series, will reflect the
programs representing the physical realization as
task-fulfilling robots in a clear-cut way. The reason we
need the discussion is that there's still a lot of
concepts that need to be sorted out--under the heading of
'robotic goal sorting'--for the programs to be made in the
most effortless way, and so that they are fruitful, that
they really are the Robotic FCM programs for the future,
for well-working robotics at every level in society.
All the existing ambitions, including dabbling with a bit
of playful brain research via the combination of EEG and
eroticism, as well as opening if possible yet more wide
philosophical horizons to our conceptual panorama view,
are still relevant and the volume 5 will simply be bigger.

This introduction of volume 4 is not complete if I do not
explain a little bit about the particular role of writing
can have for me--and perhaps for you as well, as a budding
or advanced G15 PMN programmer--which goes like this: when
it comes to programs not yet made, and which, presumably,
have a good complexity about them, writing is a bit like
walking-while-musing. The writing, not necessarily easy to
read, not necessarily pedagogic or explanatory relative to
what has been done, nor perhaps the easiest explanation of
the program that is being made, while it is being made,--
has in it the feature of 'being a discussion with oneself'
in which questions are clarified; answers are considered
in the light of proposals, which are then criticized and
dropped in favour of other proposals, in a process that is
very gratifying, sometimes, for the writer--although a
reader may feel that the sometimes entangled writing may
not be the simplest explanation of the program possible.

However, the argument of including such program
exploration writing as part of a book like this, is that
the Art of Thinking is far greater than merely the art of
explaining concepts. It is also a treatise about how to



make new thinking come about; and not merely abstractly,
but by doing it. So by analogy, the reader can do similar
such writing herself or himself. In addition, when
complexity is high, it is not obvious that this complexity
is easily remembered in detail by the programmer after the
program has been made and other, new, challenging
programming projects are on the task-list. And if the
complexity is not well remembered, it is unlikely that it
is well explained. The high-complexity program may be
better explained through the intricacies of the
explorative writing that led up to it.

But there is a vast difference between having this
discussion on software components for robots prior to a
experimentation with robotic hardware, and--as here, now,
after some years of intense experimentation with robotic
hardware. We have a very fortidious starting-point. And
at this stage, I'm ready to sketch what I consider the
perfect domestic type of robotics, which in most ways form
the prototype of every type of robotics. For instance, a
factory robot may simply be three times as big in all
senses. It is this type of hardware that turned out to be
most stable, most capable, most realisitic--and we include
here results also about practical safe maneuverability in
typical human indoor environments, and realism as to what
type of material that should be involved in these robots,
as well as realism as to how the tasks should be shaped
and what not to expect from robots. This goes together
with a sharply tested speed consideration when, as is the
core theme in First-hand Computerized Mentality, that the
first-hand Personal Computer of the 32-bit kind with the
G15 PMN is at the core of it:

First of all, every robot task is context-dependent and
no robot is for a 'general context'. This goes together
with the philosophical understand that the human mind is
essentially infinite, and that infinitude is, again,
essential for perception--in a way that is beyond
dependency on contexts. A digital computer is based on
algorithms and these are, in a way, rules of thumbs for
dealing with--not understanding--but handling context-
specific tasks. In this, the camera data is not so as to
'show' the computer or the program the 'reality', but
rather the camera data, and any other input data, is so as
to coax the algorithm to sort its robotic goals correctly
in that situation. What is picked from such as the camera
is, in short, hints to the program. They are clues. The
robot does 'see' that the cup is grasped, but the program
can be made so as to match over clues that the cup is
grasped. These clues are context-dependent. They may look
exactly like clues meaning totally different things in
different contexts. The only way a robot can 'discover'
(and we put quotes on psychological words when used to
refer to computer or robot, as part of the FCM ethics)
whether the clues actually refer to what is relevant in
this context, or possibly to something completely
different, is that when the clues tend to stack up in an
inconsistent way, relative to what is expected in this
context, it may be in fact because the context has
changed.

As such, the question, when an algorithm in a robot--ie,
on a PC running G15 PMN with connection to the robotic
machinery--is going to relate to camera data is not what
the camera data 'means', but rather: is there a distinct
set of camera data for one type of relevant feature of



this context, that enables it to meaningfully, correctly,
assign a variable value to this feature. To return again
to the 'pick-up-coffee-cup' example, a feature is:
  'cup-gripping'.
There are clues, when a camera with just a few pixels
analyzed by the program is directed straight to the
robotic hand, that can lead a program to assign some sort
of probability value to the feature 'cup-is-gripped' with
correctness. This is not to say that the robot 'sees' that
the cup is gripped. It is merely that there are some clues
in the data--eg, the pixels in some middle upper section
of the camera view are averaging brighter while some other
pixels in some other parts of the camera view from another
camera beaming in on the same situation tend to have also
brighter values on the average--that a programmer can use
to make the program create a probability value for this
feature in the program. And at a probability higher than
so-and-so (again, a threshold value that the programmer,
later on, will find a meaningful value for), the next goal
or subtask for the robot can be called on. But all the
while with a constant checking in on further clues that
things are progressing as intended.

For those who have worked with photos on a computer, and
my work with BERLiNiB fashion magazine photos is always
fruitful in giving me impulses here, they know that 150
pixels along one side of a photo that may be rectangular
is a kind of magical mini-limit to really make sense of a
photo for a human. Over to 100 pixels, except when the
context is known, eg geometry, it leaves too much to
imagination, it is a too ambigious image. Once we're
beyond the 150 pixel threshold, even if this is only its
height and we have eg a hundred or so in width, it starts
looking like a real photo and giving you some sense of
what it may be all about when you look at it larger. For
an algorithm you develop in the context of computing, it
can be translated into this rule of thumb: to get a proper
sorting out of the clues for what the robot is next to do
in a context, get at least 150 times at least 100 pixels
from each camera. And since the complexities are dauting,
generally speaking, for getting, in real time, on a real
32-bit Personal Computer at the core of a robot, let's not
go up so much in pixel size in the general case. That is
not to exclude particular cases in which special machinery
with higher pixel capacities are used. Eg, you could use a
computer to scan, in high resolution with a thousand or
more pixels in each direction, a book, in which it would
operate a camera in which the high-quality page photos are
stored. That is not to say it needs to algorithmically
permute all that all the time. If a camera input is 100 x
150 pixels, it is 15,000 pixels, of course, and new ones
by every third or fifth or tenth second, and that for each
camera. So if the robot is ever going to do anything, it
needs to be staying to meaningful minimums when it comes
to image processing.

Let's finish the pixel-talk right now with this summary,
and I'll get over to summary of other features of the
ideal domestic robot: we're doing 160 times a little more
than 100 pixels reduced to 0 for dark and 1 for light at
each pixel-point, for each camera; with adjustable
variables as for the darkness/light threshold. As a first
analysis, we do rather simple geometric matchings with 14
images of just this size--something sicular, something
quadratic, something curve-like, something digagonal, and
such. This replaces the more creative, artistic 'core



pat mat' elements we discussed in the apps made during the
third volume in this eries. These are fun, and they work,
to some extent, but further exploration showed the need to
simplify. In addition, experiments (at this point not
entirely concluded) indicate that the G15 PMN CPU made
solely via our Intraplate first-hand electronics has just
a little bit too much distance in between its elements to
fully gear up the speed necessary for a typical domestic
robot, and so this justifies some use sometimes of a more
chip-like implementation of the G15 PMN CPU in addition to
our more macro-sized and more first-hand intrplates
implementations (more about electronics of this sort in a
future book series).
  In the apps associated with the 'fic5' robotics page of
the G15 PMN works, the camera input area is depicted often
direct in the spreadsheet as a matrix the size 160x112 and
it looks really good and easy to work with--indeed, it is
looking like something almost begging for what we call
"first-hand programming". Because it is both meaningful as
a whole AND composed of visually distinct squares which
either are bright spring-green or black, and not so many
it is overwhelming to think about looping through them.
  In G15 PMN terms, we're talking of a loop that very
pleasantly looks like this in its periphery:
  LL:112
  LL:160
  ..do something with i1 and i2 here..
  LO
  LO

Experiment with wheels showed that rubber wheels of a
tracked kind is stable and good for indoor maneuvering,
without damaging most types of floors. In most cases, the
domestic robot is dangerously unstable if too tall and the
need for keeping it as low as can be vastly enhances
security. However some tasks in a typical human habitat
requires some more height, and after experimentation, we
found that a platform of motor-adjustable height right
above the tracked wheels and underneath everything else of
the domestic robot would be ideal here. That under the
supposition that when the robot is using an elevated
stance of the 'electric tea table' between the tracked
wheels and the rest of itself, it does so as moderately as
possible both in terms of height and in terms of time,
before going back to a more 'animal' or 'dog-like' height.
  As before, our opinion is that a proper robot is not
android or humanoid nor made to look like any animal.
Rather, a robot proper should look like a robot--ie, like
a machine, that is very obviously a machine, and--in
particular for the domestic robot--that has a general
radiance of being a slave to the human beings living
there. This will sharpen the minds of those who live there
about the clear-cut distinction between the machine and
living mindful human being, instead of contributing to a
culture in which that which is artificial and that which
is naturally alive is blurred. Again, of course, this is
part of our often-expressed FCM ethics. And FCM is
something we originated alongside the Firth platform in
2006.

However, when we look at practicalities, in order to have
a flexible robotic arm like the excellently chinese-made
xArm7, in which the robotic hand is its 8th motor or
'servo', it is heavy, it is big, and it is not powerful--
it can only handle a couple of kilograms at most. And if



you mount it on top of tracked wheels with the electric
tea table (as we can call it) between, you don't have much
space for more, if the robot is going to be effortlessly
enough be able to go in and out of doors and openings
between rooms. You can't mount a car-making robot arm to
tracked wheels of a domestic robot size; you can't get
even a kilogram to be handled if you are going to have
real rich and necessary flexibility compressed into small
space. This has to do with the practicality of the world
of magnets and motors that are easy to make without going
beyond the inventions of this world entirely. However, to
get many domestic tasks done, one such 'arm' as xArm7 is
too little and what we need is not just another like that,
but some easily handled power-lifting tools that these
arms can make use of it to get things beyond their range
done.
  The decision to call on xArm7 took place after a range
of experiments with alternatives--not only because of the
superior stability in the electronics connecting the PC to
the arm, but also because it took next to no time to get
the G15 PMN language, in a modified version of the G15 PMN
FCM spreadsheet, to directly steer each and every aspect
of the movement of the xArm7. In other words, we got our
vehicle by it.
  In sum, we talking of a domestic robot as, in fact,
consisting of two technologically separate robots that are
doing collaborative work, each one having tracked wheels,
a tea table, and a flexible arm capable of somewhat more
than a kilogram, and some cameras, and usually also some
flashlights mounted and such. These can by wire (or in
very well-tested circumstances by some radio control) be
connected to a G15 PMN computer (which in some cases may
be small enough to be part of the domestic robot), and to
power supplies (or to some batteries that may be located
near the tracked wheels also to provide additional
gravitational stability for the robot). Typically, the two
domestic robot may have different G15 PMN computers and so
both of them will need to get information from the human
beings as to what is to be done, and the FCM program is
made so that, at essential points, they do things
together.

Just how any one of them gets anything done, and even more
so, when two of them do something together, that's all
part of robotic goal sorting and what we will explore in
this book. When we are at volume 5, what is here will be
summed up in finished apps that have been put to much good
work in actual FCM robots doing a lot of different things,
and whatever additional fine-tunings and/or changes to the
design in these apps relative to what we explored here on
the conceptual level will be detailed in volume 5.

Let's get to it!



*INFINITY RECAPTURED*
It may be boring, and it may even to some minds be
dangerous, but once in a while, to do anything in robotics
and indeed anything in any philosophical realm, we once in
a while need to "recapture infinity". The argument is my
own entirely, originated by myself, and, as far as I can
tell, there is nothing anywhere in the technological or
mathematical world that reflects any understanding of this
argument at all--except G15 PMN, which has been made on
the premise of this argument. (For reference, see the list
in yoga6d.org/library given at one of the first pages of
this book.) When done with this, we're back to the main
theme of the book.
  Once you have grasped this logical argument, then, as
far as numbers is concerned, you have as it were entered
through the looking-glass and nothing is as before. Ie, no
numbers 'behave' as they used to. To live in the world,
you have to step out of it again, but the experience will
linger--you will know that there is an alternate
experience available, and one that hasn't any disproof,
simply because it is real. But what it points to may not
ever fully be understood. The point of the argument is to
show the limits of human knowledge, not to make a new
system out of it.
  I will slighly motivate the argument by reminding the
reader that the assumptions surroundings such as numbers
1, 2 and 3, and infinities, are at the ground of mostly
all mathematical and technological thinking, design and
construction in our present human society. It is assumed,
for instance, that the so-called 'natural numbers'
constitute a clear, coherent concept--a sort of group of
abstract concepts, namely, these numbers,--and that this
group is, in sum toto, infinite; and that there are other
infinities, such as the idea of the whole collection of
so-called 'real numbers', like 3.141519.. and all the
other conceivable decimal numbers. If all this is hogwash,
so is human science.
  Or, to be more precise, if all that which was just
mentioned is characterised by illusions, one must apply
much more caution than that which is otherwise assumed
when one regards something as 'known'. One of way showing
this caution is to apply more quotes "'" around words;
another way is to be ready to ask for instances of
confirmation and disconfirmation (as such as Rudolf Carnap
and Karl R Popper recommended in the theory of science in
early 20th century) for any statement of fact, and then
be aware of the possible multitude of interpretations in
the light of various theory horizons (the phrase 'theory
horizon', in contrast to just 'theory' or 'perspective',
goes back to inspiration from my late father, Stein
Braten).
  Practical knowledge would still exist, but more in the
sense of rules of thumbs rather than as visions of the
world or what is beyond it.
  So, the argument begins by dissolving the notion that
there are any such coherent concept as "the collection of
all natural numbers", where natural numbers are assumed to
work on the principles of simple arithmetics such as
addition, substraction, multiplication and division. A
toddler can be taught that one plus two equals three. But
you do not tell the toddler that there is a concept of all
such numbers, and that is well and good, for there is no
such concept. Let us see why.



  [P] Proposition P: There is a concept of a collection of
all natural numbers, such as 1, 2 and 3, which behave
according to typical rules of arithmetic, such as addition
and where 1 plus 2 equals 3, and so that this collection
has only such members; in other words, that every member
of this collection exhibit the same finite properties of
numbers as 1, 2 and 3 do.
  We shall now show that Not-[P] is correct.
  And we shall show it by reductio ad absurdum, ie, that
by assuming, [P] we come to a self-contradiction.
  Note that we have not used any such concept as "set",
and this is on purpose, for the argument shows that all
set theories in mathematics and technology are incoherent,
unless they concerns sets, and operations on sets, in
which something such as the exact lower and upper
boundaries are known numerically. What we are showing
involves that where finitude is assumed, infinities may
come in after all, and, upon reflection, this means also
that where lack of self-reference is assumed,
self-reference may come in after all (and lack of self-
reference is a key, if not the key, to get most of
mathematical and technological set theory to work).
  A direct consequence of [P] is this proposition:
  [Q1]: Every element in the collection mentioned by [P]
admits to arithmetic of the finite kind, and, unlike the
the imagined size in-toto of the whole collection, is
finite.
  From [Q1] this follows:
  [Q2]: As for the collection mentioned by [P], there is d
a principal distinction between the finitude of the size
of its members and the infinitude of the size of the whole
collection.
  And from [Q2] this follows:
  [Q3]: The collection of all natural numbers such as
mentioned by [P] is not self-referential--it obviously
cannot have itself as a member because its members are all
finite but its size is infinite.

Whatever lettering, whatever words we use, this sort of
reasoning, up until this point, is such as that Georg
Cantor and Bertrand Russell would have nodded to. (In the
19th and 20th century, Georg Ferdinand Ludwig Phillip
Cantor came with a so-called diagonal argument, which
presupposes such as the assumptions above, and which,
quite apart from some other parts of his thinking, entered
into common mathematical and logical assumptions also
through the works of the philosopher Bertrand Russell, and
which are regarded as schoolbook-truths today and
essential in driving forth the arguments for most of the
handling of infinities in most of the mathematical and
technological realms of human knowledge today.)

The Reductio ad Absurdum argument takes place in a context
where we, by normal humane common sense logical
assumptions, wish our statements to come forth as either
argued for, or against, by the strengths of the full set
of arguments. If by this strength we can argue both in
favour of, and against, a statement, we are, in a sense,
saying nothing. In other to say something rather than
nothing, we must track down any self-contradictions. And
if a self-contradiction can be shown to follow rather
directly in the wake of a seemingly 'innocent' and
'obvious' proposition, then the proposition can,
logically, be said to have been shown to be wrong. The
pathways of easy, natural, common sense logic shows that
from [P] we get to [Q1], [Q2] and [Q3]. If we can show



that eg. [Q2] is wrong, we have shown that [P] is wrong.
If [P] is wrong, then even the ground-breaking and, we
might say, 'essential' result of Kurt Goedel in his 2nd
Incompleteness Theorem from about 1930 vanishes, because
he, as mostly everybody else in the mainstream
philosophical/mathematical world are assuming such as [P],
[Q1], [Q2] and [Q3], and cannot get any of their thought-
works done if they are not 'permitted' to entertain such
notions. (This does not mean that what Kurt Goedel implied
--namely, that human intuition supercedes algorithms, is
wrong; rather, it strengthens that insight but brings a
completely different logical backing for it.)

Let us now, remembering that [Q2] in this our context is
attacked, use natural, common, easy, logical arguments to
actually view and imagine the collection that [P] talks
about.
  One of the things that is important when we look for
perhaps also hard-to-see incoherencies in a concept is
that we make the inherent assumptions abundantly clear.
Just what is the difference between 1, 2, and 3, and
when do we get up to 10, and to 100, and to 1000, and so
on? This, of course, depends on the 'number system'. And
the absolute simplest number system in the universe is
what we should use here, rather than any funny/quick way
of writing numbers adapted for the purpose of quick
calculation. Here, we should see the numbers as clearly
as possible--not just a notation for them.
  The simplest way to represent a number is a set of lines
or marks, and without any systematization or grouping of
them. The romans had I for 1, II for 2, and III for 3, but
when they got to 4 they wanted IV as short-hand. We want
no short-hand when we are to perceive the essence of
infinity. Let us use stars, and we can write them either
horisontally or vertically, eg like this:

*  *  *
*  *
*

We are imagining the start of the collection of all
natural numbers. We begin at the bottom of the triangle
with '1', or one star. We go to the next line in the
triangle and have '2', two stars. Then to 3.
  We are building the collection mentioned in [P],
presumably, and we are having two directions 'growing'
here, our imagination. One is the size of the collection
at each point, which is, of course, the vertical left
line:
*
*
*
This is represented in our 'slow-motion' representation of
the collection as the 'height' of the triangle. By proper
spacing, the height is at each point in extension of this
triangle with more members geometrically equal (eg, in
terms of centimeters or inches) to the length of the upper
line, which represents the upper number. Here is the
triangle again at four members, and the next triangle has
the adventurous 'three dots' that is the mathematical or
logical equivalent for the common sense term "et cetera":

*  *  *  *
*  *  *
*  *
*



.

.

.
*  *  *  *  .  .  .
*  *  *
*  *
*

The latter triangle, which reminds us faintly of a bikini
slip, has a vertical set of dots to indicate "and now we
grow it in the direction of more and more members". And it
has of course a horisontal set of dots to indicate "and
now we grow it by 'longer and longer members'--which is to
say, higher and higher numbers. In our number system, the
most simple in the universe, the size of the symbol of the
number in terms of how much space it occupies, equals the
value of the number. A 1000 stars, to represent a 1000, is
a thousand times as 'long' number as a single star, which
represents the number 1. And this permits us to visualize
more exactly what we are talking of in [P]. And it permits
us to deduce a new proposition:
[Q4]: At each point in constructing the collection
mentioned in [P], we have a symmetry in which the size of
the collection is mirrored by the value of its latest
addition.

Again, we have used nothing but common sense and clear
logic and slow, good thinking to reach the series, [P] =>
[Q1], [Q2], [Q3] and [Q4]. But if we sort of re-awaken the
mind of a Bertrand Russell and ask him to look at [Q4], we
can guess that, while almost certainly nodding to it, he
would slightly wrinkle his nose. Because, what we have all
the time pointed out--that there is an incoherence in [P]
here--is here, for the first time in our exposition, now
beginning to show. We haven't, in [Q4], discussed anything
about infinity yet, and one of the things Russell knew one
would have to avoid--and that Goedel showed Russell he
couldn't quite avoid in the way he imagined, at first--
is self-reference in an infinite set. And with [Q4], we
are getting self-reference with a finite set. That's no
crisis. But we aren't done yet.

Before I go further, I wish you to meditate for a moment
--but don't glue this visualization, please, to your mind
because your mind has features also of the algorithmic and
--as with Russell's set theory--algorithms don't stand
much self-reference and certainly not when we get beyond
boundaries. So don't use up your brain on chewing on
arguments like these. Let them be as rain, clearing the
air and when the Sun again is shining, do something
reflecting that; don't wade around in the rain of infinity
and get funny like many of the old infinity-mathematicians
did, if we are to believe some of their biographies.

And the meditation, or pondering, or contemplation, or
musing, is this: imagine now that this collection,

                .
              .
           .
*  *  *  *
*  *  *
*  *
*



or half-bikini-slip, in a sort of abstract platonic world
of human concepts, has, in fact, gone all the way to
complete itself. Now there is no call for saying, 'Don't
do that visualization; it's enough to visualize the start
of the set.' For if we are to proceed from talking about
the numbers we count on fingers and teach to our toddlers
to whether there are more types of infinities than one,
and such, then we have got to take our own construction
processes at the abstract level serioiusly enough that we
pursue them to completion. The full and complete
collection mentioned in [P] requires a mind-leap, it calls
for it, the mind-leap is a necessity, a logical necessity,
and absolutely required in order to detect whether our
thinking is clear or muddy. So let us do it. We now,
hereby, in our minds, reflect over the completed condition
of the formal, abstract set of all the natural numbers.
And we do so by our clear, natural, easiest-in-the-
universe depiction of numbers by the stars above, and
imagine that, by the three dots, we go, actually--but only
in mind--"all the way".

And if you do it, it is an instant immensity of mind. At
no point were there a breaking of symmetry between the
growth of stars in the left vertical direction and the
growth of stars in the upper horisontal direction. That is
why it is entirely proper without any discussion to let
the three dots be diagonally placed, up to the right, in
this context of construction. Note that fallacy of writing
the oft-repeated N={1,2,3,...} as seen in the thousand
schoolbooks. The 'N', or set of Natural Numbers, has the
illusory right angular bracket, the '}', to close it off;
while the numbers 1, 2, and 3 are not shown for what they
mean, but only assumed to be known, and the dots are
applied only to them, and not so as to show the growth of
the size of the set together with the growth of the value
of its members. So for all its simplicity, N={1,2,3,...}
is a false simplicity, for it is misleading.
  I bring the imagine again and again encourage you to
engage in mental abstract logical visualization and to get
intuitions about this visualization:
                .
              .
           .
*  *  *  *
*  *  *
*  *
*

Karl R Popper wrote that (despite his insistence on the
empirical checking of theories) he also believed (and in
the context of mathematics) in intuition in order to check
theories. It is because intuition is required to ascertain
the quality of a logical proof that there can be, and is,
disagreements about proofs. This intuition is the only way
in which any argument about infinity can be analyzed. A
computer, whether of the classical digital kind or made by
some other method, cannot ascertain this kind of proofs.
Only human minds can do that, and on the assumption that
intuition exists, an intuition that can delve into
infinitudes. By this intuition, when you watch the above,
and remember our [Q4], we'll get to our [Q5]. But do it
slowly, because we are nearing now the negation of [P].
Here again is our [Q4]:



[Q4]: At each point in constructing the collection
mentioned in [P], we have a symmetry in which the size of
the collection is mirrored by the value of its latest
addition.
And, to not anticipate too fast, here is a next step.
Again, I call on your combined powers of abstract
imagination and intuition to see that what we are here
talking about are logical deductions and not merely some
kind of poetry on top of our postulates--but you have
about a million schoolbooks and university books that
point in other directions, so do it with proper slowness:
[Q5]: As we gradually, more and more, imagine that
collection mentioned in [P], and represented in the
simplest-way-possible by the triangle of stars, are grown
more and more without obvious boundaries, we do not see
any breakdown of the symmetry between the vertical length
(ie, the size of the collection) and the horisontal upper
length (ie, the value of the most recent addition to the
collection).
In short,
[Q6]: The construction mentioned in [P] implies an
absolute symmetry between, at each point in the
visualized construction, the size of the collection and
the value of its highest member. And we maintain a
continuum of visualization here in which there is no
point, even as we begin to entertain the notion of
infinity, in which this symmetry is "cut off".

Now, if a revived Bertrand Russell were with us, he would
here almost certainly wrinkle his statuesque nose--quite
possibly also shake his head and murmur something about
having a headache. And we have sympathy with him. This is
the breakdown-point of most of human knowledge, for, as I
have often claimed, h.k. is having as an axiom--a false
axiom, imao., that it has grappled infinity quite well. An
I'm not impressed by the writings of many of those who
claims to be believers in a religion or some sort of
spirituality either, for they seem to often support this
axiom, even if a hidden way, while they may profess
support to a general idea such as 'God's ways are entirely
beyond human understanding'. Nor is it solved by inventing
new symbols trying to capture 'omega' numbers or something
fuzzy like that. There is no easy solution other than
changing your life; and that's why there is such inertia
around finiteness/infinity assumptions in human knowledge.

To give our imagined friend Bertrand Russell some credit,
he did in fact have a period of doubt--when he encountered
Cantor's Diagonal argument for real, the first time. The
doubt vanished. But the mere fact that he wrote down that
he had such doubt, shows, by the lips of, so to speak, the
The Guru of Natural Number Sets himself, that intuition--
and time, human time, the time involved in visualisation--
comes in even at the core of deductive, logical, formal
reasoning, and in which that which later on, erronously or
not, may appear 'obvious' at some time did not earlier
seem at all self-evident--and, as we're constantly arguing
--with very good reason indeed. For it was all completely
wrong in essence. The Digonal Argument of Cantor is total
nonsense if there is no set N={1,2,3,...} which behaves
the way he assumes, and as I hope you and I together are
beginning to see very clearly right now, that the set N is
little but sloppy thinking. Let us do the sharp thinking
here and get over to the next chapter and back into
rule-of-thumb practical knowledge again--but armoured by
a very significant 'logical humbling' as regards the



dealings of infinity in abstract thought. (For those who
wish to her inklings of this insight as I have found them
eg in 10th century Anselm's works, Archbishop of
Canterbury, see eg super-model-theory.pdf in the library
net folder as listed in the start of this book.)

It follows from [Q6] that:
[Q7]: Fulfilling the logical imagination request in [P] as
regards this collection so that it shall, in some infinite
sense, be regard as complete, and this completion indeed
being necessary for it to be considered a coherent
conceptual whole, involves that we invoke no extra
parameter that can cut to pieces the symmetry we have
discussed in [Q6], but rather than we imagine an
indefinite process that is at every stage, also in its
completed stage, having the same absolute symmetry.

From this it is easy to reach the next point, which is, of
course, in direct contradiction to [P], which asserts, as
part of the construction principle of the collection, that
every member has finite properties:

[Q8]: As regards the collection mentioned in [P], the
symmetry which exists when it is incomplete and finite,
has not, and cannot be, removed when it is complete and
infinite.

This is in contradiction to [P], because from [Q8] it
follows that:

[Q9]: As regards the collection mentioned in [P], the
visualization of the collection shows that self-reference
is maintained even as it is reaching infinitude. And if
it hasn't reached infinitude, it is not the collection
mentioned in [P]. When it has reached infinitude, it has
members that does not permit the characterisation that
[P] required, namely that they are finite.

By Reductio ad Absurdum, we have negated [P]. There is no
set of natural finite numbers only containing natural
finite numbers and no other types of numbers, in a
coherent formal understanding.

A short way of saying this is that "there is no such thing
as a set {1, 2, 3, ...}", or, "there is no set of finite
numbers" (ie, without upper and lower boundary set, so
only finite members are part of the set). This means that
if a textbook has in it a phrase like, Let N={1, 2, 3,...}
and it goes on to use this set N, it is an incoherent
textbook. If it doesn't see the issue about this
formulation, it is likely to go all over the board in all
other questions involving numbers.

This, though in more immature language, was dismissed as
a master's thesis at the dept. of Cognitive Science at the
University of Oslo when I delivered it there before I
wrote the 2005 book on physics and numbers listed in the
beginning of this book. They did not yield when I said
that they should look at it again--though the professor
there acknowledged that he saw my point and did not see
how to object to it. I took that as a token that to such
an institution, loyality to the words typically spoken
may matter more than whether the words refers to coherent
thought and reality. Fine with me, let them be that way;
they are making themselves irrelevant. Life goes on and
washes away such incoherent machines.



The G15 PMN was shaped, of course, after this insight, and
so as to directly reflect an honoring of the sense of
infinitude as something most typically beyond the grasp of
thought and according to a philosophy inspired by all this
such that, for instance, the use of such as the three dots
or 'et cetera' is taken to be something by which we must
formally be careful about so as not to invite an infinity
in 'through the side-door' without having awareness of
what we've done.

The pathways for new coherent thinking on numbers and
infinitudes from this, I venture to say, is itself
infinite. Nothing of it has begun for real in humanity as
yet. Plenty of formal thinkers have been creative about
infinities, but when this creativity is not grounded in a
solid insight into the incoherence at core of formal
thinking about numbers, it just gets a lot of funny big
words and rather nonsensical new 'theorems'.

On the optimistic note, however, it can be added that
exactly since this insight has not yet come into a
realized form in common sense understanding of numbers,
we have new solutions--entirely new solutions--ahead of
us.

That is enough meditation for now. Now, out of the rain
and into the glorious sunny day.

*WHAT ARE COMPUTATIONAL NODE NETWORKS?*
In a first-hand computer, which, as we have discussed
before (in this book series, also) is 32-bit, ie, its
numbers have a known upper as well as lower boundary,
which is approximately plus minus two billion when
discussed in term of our normal 10-digit number system,
what goes on is all a question of algorithms and data.
And algorithms are nothing but exact rules for pushing
data around; and--though care must be applied by the
human programmers making such arrangements--some of this
data can be algorithms. So, for instance, it is by an
algorithm that we can move an algorithm and its data
from a storage position into a position in the computer's
RAM where it can be performed. But if we use an algorithm
to peek and poke into another algorithm, great care must
be taken not to make a mess.
  When algorithms, which are each exact, are going to
handle something like steering a robot to wash the floor
not too much and not too little, some of the data that
they use reflect gradualness, probabilities and such.
That is, of course, not to say that the digital computer
has become analog and 'probabalistic'; it is only that the
exact rules have been written in a way which thoughtfully
reflects more fuzzy challenges and solutions.
  The idea of an algorithm is of course a human concept
and to some extent a 'mental projection' onto a machine
that we have made. It is a way to describe a certain flow
of electricity along certain lanes and to use such
descriptions creatively to redirect some of the



configuration of this electronics. A click on a PC
keyboard involves electrons and the portion of the
computer we call RAM or Random Access Memory. To describe
this as 'programming' means that it is part of a
concerted effort to get these keyclicks to have certain
patterns such that, when certain other patterns of the
computer meet with them, they lead to a 'performance' or
'execution' of the program. These are descriptions, but,
as it turns out, highly useful descriptions. There is a
clear satisfaction, and rightfully so, for us human beings
that we can make something hugely general in nature and
equip it with what we call 'instructions' and leave it to
itself and see that it performs all that as expected.
There is a real sense of mastery in doing simplistic
programming, a mastery that would not be the same in the
PC politely asks you what it should do and appears pleased
to receive an inaccurate description of it. We expect such
delicious inaccuracies to be part of the rule of the day
between living beings with minds; but it is a different
set of expectations, and joys, in connecting with
something utterly algorithmic.
  In thinking about programs, we can evolve new concepts
on top of 'algorithms' and 'data' to describe certain
bundles of such, and encourage a certain type of
programming to meet a vast range of situations that might
otherwise appear a bit too complex to be handled by
'mere' algorithms. But let us keep in mind that these
things are descriptions and not take them too seriously.
  A very healthy concept, and useful, connecting to the
old Latin concept of a knot or a bind, Nodus, is that of
the node, and to consider a program to be a network of
nodes. At once we can imagine lines between squares or
between some imagined abstract concept to indicate a
larger program structure. The 'lines' may be such as data
which gives the address in RAM for each 'node'; each node
may be an array with some warps to algorithms and some
other numbers representing some idea the programmer has
about what should be measured or what is to be done.
  When we speak of a computational network of nodes, we
usually speak of a situation, like robotic tasks, where
the idea of probability is profuse and certainty a luxury;
we also speak of a situation in which sequences of that
which is to be done by the PC--and ultimately by the
motors and other expressive aspects of the machinery--can
vary according to the somewhat fuzzy features of the
situation.
  It is still of course all a question of algorithms and
data, only that we now tend to line things more up as a
matrix where each slot in the matrix contains some data
and some algorithms and some more data that links various
parts of the matrix; and a 'master algorithm' that works
up and down the matrix to calculate what next is to be
given computational time, CPU time.
  First-hand computerized mentality, or FCM, has a general
description as a sort of matrix, and, if you like, set of
matrices, that you can use rather as you like--a kind of
framework to do thinking over algorithms and data in a way
that makes sense for making good robotic programs of just
about any type; and the definitions of this framework in
G15 PMN is of course part of what is called 'Third
Foundation G15 PMN' and shown to be useful in showing
features of quantum and relativity physics in the
super-model-theory.pdf as well as shown to be practical
and fairly easy to work with esp. through the G15 PMN FCM
Spreadsheet program. It is this program we wish to use in
perhaps most FCM programs, as a frontend, showing the most



important things and allowing input about the most
important things. The spreadsheet is one set of 'nodes'--
also called 'funds' or even 'foundries'--and the other
node networks can be handled by the same main algorithm, a
function called 'translucent', so that the computer flips
back and forth between giving computational power to the
spreadsheet and to whatever else the robot is all about.
  'First-hand' means that we as human beings with minds
have, as part of a broader 'understanding ethics', as a
criterion that we can and do understand what is going on
in the computer at mostly all levels also when we do
robotics.
  The FCM framework in G15 PMN Third Foundation is truly
immensely open. It doesn't say that nodes have to be of
only two or three categories or whatever. It doesn't say
that links have to go only forward or up or back or down
in the imagined network. It allows any 32-bit number to be
given as 'level number' for each slot in the matrix; it
has a number of open slots for 'links' and other slots for
warps and data, including a number that can turn off and
on the slot--that is to say, in how the main loop
'translucent' handles it.
  So the FCM framework in G15 PMN allows you to think,
plan and implement just about any computational node
network you like, as long as it is realistic. Realistic
involves also that you remember that a robot is context-
bound, it is task-specific; there is no such thing as a
'general' robot.

In considering such as the range of tasks, and challenges,
a domestic robot helping one or more human beings getting
on with the pleasures of living and reducing the
quantities of boring tasks, must do, we can easily begin
to describe some of the main forms of nodes--but all the
time bear in mind that these forms of nodes are but
descriptions of nodes; and that a node is but a
description of algorithm and data. But these descriptions,
when leading to clear visualisations, good questions, and
good answers, lead to rules of thumbs in how to make the
proper algorithms--which in FCM robotics with G15 PMN also
may mean to construct something around the the FCM
Spreadsheet.
  So, for instance, some nodes are more obviously about
'summing up features' of a situation, whether a situation
presumably 'out there' in the real world eg as read in by
cameras, or a situation in terms of what goes on inside
RAM. These can can freely call 'matching nodes', but the
distinction will work only approximately. Distinction
relative to what? Well, we can call the main other type
for 'task nodes'. So the task can be to clear up the room
and a matching node can represent the degree to which it
is at present messy. The task involves getting something
meaningful done, in a meaningful time, that reduces the
number representing the 'messiness' in that matching node.
  Some tasks can be there in the sense of regulating the
other nodes, providing healthy boundaries of action; we
can call them 'ethics task nodes'. They can be considered
to be 'top priority' in the sense that they may never be
overridden by a practical task node, rather they can stop
a practical task from being done if there is a threat to
something of principal importance as measured by a
matching node that the ethics node constantly refers to.
The obvious examples are that a cleaning robot has no
business running its wheels over people's feet or bumping
into a plant or to rush ahead in case kids are playing on
the floor. Here, the life-protecting ethics nodes are



higher-level tasks constantly performing a monitoring
over the other tasks, and if there is an uncertainty which
is significant as to whether the higher priorities are
satisified, the robot should go to a rest state or
whatever it takes to not override these priorities.
  Some matching nodes are simply that--they match over
some data eg delivered from a camera. But others require a
sysmtematic building up of data over time, involving a
number of actions, and so it is equally well described as
a task node. The distinction must be soft.
  Of task nodes, most of them, in a FCM program which is
sophisticated, call on subtasks, or goals, in a way that
is at least partially dependent on matching nodes, not
only in order to be activated, but in order to tune them.
The domestic robot may want to wash a cup in hot water,
but this washing is different depending whether the cup
is just lightly and recently used by such as water or
coffee, or whether it was used to drink some yoghurt many
hours ago. The intensity of washing must be coherent with
a matching over it.
  Yet in every robot there are essentially 'entrained
actions' which are nought but motions of its engines or
servos or whatever we call it. We can call these nodes--we
can have, if we like, one node for each such entrained
motion series--for tasks that are 'elementary actions'.
The robot ultimately expresses itself in terms of a well-
sorted sequence of elementary actions, or goals at the
action level. But the more sophistication it is to its
computational node network, the more the programmer has
put into getting this to be finely tuned according to a
possibly rather vast range of insights.
  Now we must all the time go back to the point that the
nodes are but slots in a matrix, slots which contain both
algorithms and data, and that all descriptions are but
descriptions--there are no absolute distinctions of types
here, and if we do begin with absolute distinctions of
types, you can bet that most of the programming later on
will be all about superceding those distinctions. It is
this knowing that goes into the FCM framework as we have
designed it, and which not only asks, but requires, the
human mind to express itself through the shapings of this
network.
  For instance, while 'elementary actions' sounds pretty
definite, you can perfectly well make a full copy of all
the nodes and run it, on command by some of the task-and-
matching nodes, as a simulation. Here, the elementary
actions, when performed, are put into a mode where the
robotic motors aren't getting impulses, but instead there
is a simulation of expected results of these elementary
actions that feeds back to the more elementary matching
nodes, instead of actual input from cameras. And as long
as you keep your tongue straight in your mouth, you can
have such a simulation call on another, and perhaps
different, node network, which represents a simulation of
some of the features of the likely behaviour of a being or
object out there in the real world, such as a human being.
  Say, for instance, the robot matches on the reality of
'kids playing at the floor' and at the same time it has,
with some emphasis, been given the task of 'gentle washing
of all the floor and this with effective nudges to all
present to move aside a little bit' and ethics tasks
making it absolutely clear that there must be no harm to
anyone. And let's also imagine that the robot has a sound
bit that it plays, with a nice little song about its
intended washing of floor but the kids, having heard it
before and considering the robot a kind but uninteresting



nuissance in the background, simply ignores it. The robot
may match over the attitudes of these kids and it may have
some strategies such as offering some rewards such as
candy for moving a little bit over to the other side of
the room; or pretending that a game is about to be played;
or putting on music too loud for games to continue; and
some other strategies like that. How does it select
between this or that pathway to achieving the goal some
other human being has given it, and within the ethics
criterions? For this, it may have, if the human programmer
has bothered to do all the work, a simulation capacity so
that the robot can explore likely consequences of this and
that action pathway, while taking a pause and not having
any motoric output while the simulations go on.
  Eventually it decides on a pathway, or that it is too
risky and it folds up in a corner.
  How are the simulations switched on? How are the results
of a simulation of the other or others reported back to
the main computational node network so that a task can act
on the result? This is all up to the programmer--for any
node can be anything--it can connect to camera or to
simulated cameras; it can express in terms of elementary
actions that actually go out as signals to robotic motors
or just to nodes that contain some information about the
typical expected result of doing such and such. The
simulation is just another computational node network and,
as we said, each such may call on some others to some
levels--not too many, it must be first-hand understandable
--and the result can be plugged into a high-level matching
node in the main network by an algorithm in the simulation
network--whether by a node that is vaguely of the
'matching' kind or one that is of the 'task' kind. Or, the
main network, after having called on the simulation, may
reach into the simulation and fetch the results from it--
after all, RAM is RAM and in the real world of algorithms
and data, all is shareable. One can make rules of
division of sections of RAM but only at the price of much
work to go beyond those divisions later on when it's
necessary.
  So we see that the notion of computational network of
nodes is highly fruitful, it is fun to think with, it
lends itself to be a thought instrument for expressing, as
programmers, a bit how we ourselves may ponder over a
situation before, and during action, and in this sense,
the programmer expresses his or her mind in the FCM
program--without presuming that this expression 'has a
mind of its own'.



*HOW CAN TWO ROBOTS COLLABORATE?*
The text you read now I wrote on B9edit, which is of
course a G15 PMN program. To get anything done on a
computer, we need to get algorithms and data; and so
G15 PMN is a way to mould algorithms with elegance. The
B9edit text processing algorithms handle the data of
clicking at a keyboard. So even core programs have some
connection with hardware, ie, something not just digital--
like a keyboard. The hardware usually have its own little
electronics, generally much simpler than the computer, but
just enough to get its activity translated into digital-
looking electricity pathways to which the computer can
relate. The typed-in characters are in a way, "data", and
usually the computer, maybe even the CPU itself, will
have a special location where this data resides--and it is
being automatically updated by the electronics as typing
goes on. A request to the CPU by the program to fetch the
most recently typed-in character will then make the data
available to the algorithm and it can store it somewhere.
  All this involves timing--the timing of the hardware, in
this case the keyboard, has to relate to the timing of the
algorithm; and the algorithm must distinguish between what
is a visible character, like "A", code as Ascii with the
number '65', and that which is a click eg on the F3
function key, which in G15 PMN, as relayed by the "KI"
two-letter word function, has the number '284'. This F3 is
of course used in B9edit to signal such as a storing of
the text you just wrote to the disk.
  So with the most essential types of computer programs we
are handling what we can call 'collaboration' between
elements of the computer. When we equip the computer with
more hardware so as to make it into a robot, there are,
of course, many more such instances of collaboration
involved, to get the whole machinery to work. To program a
robot to do tasks on its own is complicated enough; to
program a robot so that it can do tasks together with
another robot--also so that the twin robots can be
considered to be two aspects of one larger robot concept--
is of course yet more complicated. But it's good to know
that the notion of collaboration has been called on from
the very first computer programs we think about.
  You notice, perhaps, that I do not feel inclined to
treat the notion of collaboration with quotes, unlike if
we say, for instance, 'The robot is "satisfied".' Any
mentalistic or too-biological/lifelike word, when applied
to a robot, should be put in quotes so that we do not
derange the vision of the human being even if we work much
with, and talk much about, robots, in our daily life.
  And so, in our FCM works, we do not say that the robot
engages in recognition or knowing. Rather, we might say,
for instance, "This is a situation where the robot matches
over quickly and well." And, "The robot has been well
entrained." (We do not say that the robot has been
trained without in case using quotes around that word.)
And certainly, there is no "training of algorithms". An
algorithm is an absolute unit which pr definition has no
component whether of learning or training. Rather, an
algorithm can be of the "entraining" kind so that it can
match over data and gather more data through these
matchings so that it can offer smartly built data that
allows quick and relevant matchings over similar data
later on. This is a whole other class than living human
being activity; and we should be generous enough in our
word-life that we have an alternate set of concepts and do
not engage in tacky word use relative to robots, and/or
forget the quotes.



  Having said this, we do permit some more obviously
'behavioural' terms and a few near the psychological realm
to be used with regard to computers. For instance, easily
we may say of a computer that it works, and we do not feel
inclined to wiggle the fingers to indicate that this was
a metaphorically intended word that should be quoted. We
also speak of the computer's memory, because the word
conveniently into the talk around computers in the early
days when they were first being built and it felt cosy
and natural enough and there are plenty of examples of use
of the term that goes beyond the reference to a particular
living being--eg, 'They erected a statue in memory of the
hero.' And if we can say of a single computer that it
works, then we are certainly at liberty to say of two
computers, with or without robotic hardware extensions,
that they can work together; and to 'work together' is
one of the definition of the verb 'collaborate'.

Now a robot, when programmed, may at times just be a
concept in the programmer's mind--because there may be
months of software preparation work that requires thinking
and walking and wondering and typing and musing over
example programs, all the time visualizing that this will
be part of a full active robot doing safe and good things.
Gradually, the robot, perhaps initially controlled by a PC
which is in the side of the room and through long and
heavy cables--the PC having a giant screen, a huge and
comfortable keyboard and is situated on top of a desk--
is getting to move and relate inputs through cameras and
the FCM program is built up. At some point, perhaps it is
all bundled up into one unit, a robot with its own little
computer (with or without radio signals to a computer
nearby doing steering), its own little screen perhaps up
front (but out of the way relative to the practical things
the robot must do with its robotic arm), and a little
keyboard and an optional mouse there as well. This little
computer may overheat if one does full graphics all the
time, and so there is a version of G15 PMN (which I
developed this year) which is called Batch Graphics,
shortened into G15BG.
  In G15BG it takes either something such as a push on the
ENTER button of the keyboard, or a particular, and new,
G15 CPU instruction that only make sense in G15BG, to show
any graphics on the screen. Otherwise the screen does not
update and is in a rather passive state. This makes grand
sense for robots, for they have so many other ways of
'expressing themselves' than screen output. They have got
an arm or more; they have got wheels; they are huge; they
move about; and a screen is just one item among many.
  However, a screen has one giant advantage over all
other output mechanisms for the robot: it is native to
G15 PMN, it is an action of pure leisure, a quantum of
solace we might say, to put out something on the screen.

So when we get two robots to collaborate, and we need
good timing, we need a way to exchange cues--what in
traditional electronics communication terminology is
typically called a 'handshake'--and for that, screen
output by one robot as captured in one of the cameras of
the other robot may be a cardinal way.
  In First-Hand Computerised Mentality, and indeed in any
first-hand programming, the emphasis is on the human
visible and on human understanding. If something is done
via a screen that you as a human being can look at even as
you get your program to decode that screenoutput via
the program on a twin robot as it caught it in a camera,



then we are in a situation in which the entire situation
is more human-readable than if, say, radio waves at
1000 MHz were used. Light involves, apart from its
philosophical mysteries, radio waves (as we can call
them, although classical physics insists on the phrase
'electromagnetic waves') involves not merely such as the
typical medium waveband 1000 MHz but, let's say if we
want green light, 555,000 times as fast vibration. That's
555,000,000 MHz.
  So if you are to program twin robots to do certain tasks
together in a pre-programmed way, one way you can make
them do the necessary handshakes are by means of radio
waves--but if you can select 555,000,000 MHz instead of
1000 MHz for these waves, that's what you do, because
555,000,000 MHz is a green light on the screen whereas
1000 MHz is invisible and merely creates a scratching
sound in your AM radio (or music, if you so please).

But with small screens on vehicles with tracked wheels,
and cameras only here and there, such an arrangement makes
most sense if we limit the complexity of the cues to,
let's say, a letter or a digit shown over the whole screen
one at a time, and indeed for several seconds each time.
Essentially, what you want in many cases is, "let's do
step 3; give me a thumbs-up when your part is done", and
similar communication concepts.
  For instance, with two tracked-wheels robot with one
flexible long arm on top of each, and variable height,
screen in front of them, and cameras here and there so
that the programmer can select the most appropriate
camera to check for handshake cues, the programmer could
choose to get the robots to align themselves in a vaguely
'face-to-face' manner with the task between them. Maybe
they're going to lift something too heavy for one of them
and so one arm goes to hold on one side, the other arm,
of the twin robot, goes to the other side, and typically
one of them takes the lead and awaits for cues from the
other that it has done as requested. The main robot waits
for what is essentially a "nod" from the other robot that
it has a firm enough grip, but it being the main robot
doesn't send that signal the other way. It simply checks
its own grip. When it has checked and confirmed that it
has a good grip, and also got the equivalent of a thumbs-
up from the other on this, it signals, "Okay, now lift",
and it might do so by flashing a number or letter on the
screen.
  Now in this, for robots, fuzzy domain of the real world
and its many interpretation possibilities through
ambigious input in low-res through typical monochrome
cameras, there may be a sudden matching that the grip must
be improved or that the task may have to be done in some
completely different manner. That can be the task of
either of the twins to signal to each other.

A experienced computer programmer, who have done many
types of work on a PC but not, perhaps, yet on a robot,
may notice a similarity to this situation and that of
analyzing perhaps partially restored disks or getting to
grips with plucking some information from a database made
by a program no longer in existence. In such situations,
there is a lot of available data but very little of it
comes with labels attached explaining anything of what's
what. So something has got to be tried, and it may take a
bit of time to see whether something meaningful builds up
in terms of a particular take on the old magnetic floppy
disk or whatever it is; and then perhaps something else



has got to be tried. The programmer, and through the
program, _looks for cues_ in the data. These cues don't
necessarily stand out very clearly. One has got to spot
them. And one has got to interpret them. And gradually one
can build up a way to do this so that, after sweating it
out with 20 hours programming ignoring dinner etc, the
program works as a dream and the programmer can dream
sweetly on the office floor, hearing cheerful clicking
sounds from the obedient computer, running his or her
genius program.

So, fetching cues from data, and, in the case of twin
robots, doing handshakes--these are obviously part of the
natural and, we might say, necessary standard reportoire
or smorgasboard of the collaborative robot programmer.
Getting this right is essential.

Getting the robot to collaborate right with human beings
is also essential--and infinitely more complex. But
absolutely everything you learn when you program twin
robots to collaborate in a preprogrammed way can, with
suitable sensitivity, be conceptual input to the much
vaster question of how the robots collaborate with living
beings, and in particular human beings. And relevant areas
to explore includes also how two or more robots can do
improvised collaboration (not an easy task).

So we see that the theme of collaboration keeps on
expanding as we explore it. How, for instance, do you get
twin robots which have several preprogrammed collaborative
tasks readied inside them for a particular situation, to
get going with their collaboration? The obvious and easy
answer in many situations is, click on them, dude. Let
there be a menu on each little screen and let the
preprogrammed collaboration type be selected, one for the
main twin, and one for the other twin--what we might call
the slave twin.

This is obviously a theme we'll touch on regularly.

In some of the forthcoming chapters we'll dig deep into
the Third Foundation G15 PMN code with focus on the
definition of the framework for FCM there, in particular
the matrix of the FCM nodes or funds, and do the type of
software thinking/planning/writing that must be at the
foundation of every good FCM program. Not all of it will
be very readable unless you have some years with G15 PMN
behind you, but it can help you to master G15 PMN if
you patiently absorb this while not trying to make full
sense of everything at first.

*GETTING DEEPLY PERSONAL: HOW MAYBE THE BRAIN WORKS*
The past four years, more or less, I have had a personal
experience that, for fear it dims in my memory now that
it is, with each month, more and more a thing of the past,
will have to be written just now, and this is clearly the
right place for it--for it concerns an aspect of the quest
to unleash thinking.



  My late father had a brilliant brain, and he was a fast
talker, a good writer, and admired thinker, on themes such
as dialogue, communication, simulation, emotional engage-
ment, empathy, and steering away from being submerged to
the limited understanding by others (model monopoly or
model power theory). He also collaborated with Kristen
Nygaard (whom I later befriended) at a time when Nygaard,
together with Ole-Johan Dahl, at Regnecentralen, Oslo,
in the 1960s, were working out and implementing the
concepts of object-oriented programming. The first form of
Simula, in which father simulated voting behaviour, didn't
have hierarchical object/class orientation. A later
version, Simula67, had it, and it led to the development
of Bjarne Stroestrup's C++ and then to such as Objective
Lisp and Smalltalk and Java and all the rest of it, up
until Xerox Parc with frames and mouse, Apple and Windows
operating system and the hundreds of programming language
shaped in this paradigm that Dahl and Nygaard specified in
utter detail in the 1960s--this is well-documented
history.
  My father also had great emotional energy and his
methods of arguing could slide quickly, sometimes too
quickly, to an angry tone when he got impatient; but as my
sister Kristin pointed out to me some weeks ago--he always
'made up'--he got back to you and got it right again; he
didn't slam doors and keep them shut. He was always
getting back to the generous mood, and if he had to
apologize for his tone, he did so, readily.
  Having nearly a dozen books behind him, and hundreds of
journal-published articles, and his thoughts on his theory
of the Virtual Other published by nothing less than the
top-prestigious Cambridge University Press in a book he
edited after running a seminar on childhood development at
the Norwegian Academy of Science and Letters, it came as a
shock to him that his memory, esp. after the death of my
mother, Else Reusch Braten, began being less easily
available to him than in his younger days. When he was
nearing ninety, this issue was more pressing than ever;
however he wasn't confused--he was simply more often
silent when he had trouble remembering, trusting that more
presence of mind would come around perhaps already in the
evening. And it mostly always did. My late father, the
and author Stein Braten, will have his last book published
around when he would have reached his 90th birthday, at
November 3, 2024.
  Earlier on, his beloved Else, my beautiful mother, was a
constant source of inspiration and harmony for his writing
--and so, in a natural way, his mindful intellectual and
dialogic teaching and research was entwined with his
utterly important companionship with her, his wife.
  My role in his book-writing over the past four years was
that of facilitating, as best I could, the conditions for
his writing to go ahead more or as s as before, though his
last book had been published in 2013, and he almost seemed
to have concluded he couldn't make yet another. And for
those who find it incredible that a person who, say,
during lunch-time, can have a hard time remembering many
trivial daily-life things, can express philosophical
remarks over scientific studies with exquisite
sophistication in his writing time during the evening, I
can say: this was my daily experience of him. Over the
past years, he increasingly needed help with trival tasks;
but when he was in the book-writing mood, --and I will
tell now here a bit about it--he got as it were 'online'
with the best parts of his intellect and was in possession
of both intellectual capacities of reflection and memory



surpassing that of the other parts of the day to a
significant extent.
  I also wish to get these recollections noted down, so as
to give a message to those who think 'measuring cognitive
ability' is something fairly simple, a matter of exposing
a person what they regard as some 'cognitive tests' and
noting how well and how fast the person did what they
think a high-cognitive person is supposed to do. To think,
to cognate, to have cognition cannot as such be measured
in the way some of those cognitive-test-makers imply. I
have my own interpretation of what the role of the brain
is relative to the larger concept of what we call the
'mind'. But in any case, I have here empirical knowledge,
albeit anecdotal, but consistently and over a long time
with a person who had unique intellectual capacities at a
very old age but yet required a set of circumstances to
unleash it. Now what are these circumstances.
  In contrast to my reflections over such as programming,
being systematic about reflecting over the theme in this
chapter comes only at an effort for me, but here is a go:
  First, my father needed to have much of the
practicalities of the day and its main meal behind him. He
also needed relaxation in front of the TV with his most-
loved films. These were in general fairly harmonious and
yet with grand perspectives--as his fascination for the
hieroglyphs and the ancient Egyptian cultures--or having
unique beauty and good flow in communication, as a BBC
movie over the fictional character Emma, based on a Jane
Austen novel, starring Romola Garai, from 2009; or the
life biography of the Norwegian explorer and scientist
Thor Heyerdahl; and other films, including with Meryl
Streep. I hired young freelance nurses and homeworkers to
do something together with him during some of the day, and
these girls had a wonderful effect on him and often seemed
to contribute directly to his enthusiasm to write more.
  After spending quality time in front of the TV, he would
qext go to a couch, in front of his writing station--his
PC. Here, he would, with my assistance, put on some
Shiatsu 'massage machines', to easen bloodflow. All the
while, the temperature would be many degrees higher than
what's typical in Norway: without this, apparently, the
bloodflow would not be adequate to allow him to get into
the writing form after the use of massage machines. I
have since read studies on certain diease-fighting
features of the human body activated by a higher bodily
temperature which in turn can be activated by such as
higher temperature around a person in the room; and I
myself always find intellectual work much easier in a high
temperature room, so in that sense there was a
compatibility of approach. An intellectual working
temperature 30 degree Celicus, or about 85 degrees
Farenheit, is only possible though given certain
conditions of bodily leisure, adequate nonalcoholic
beverages (for alcohol drains the body of much-needed
humidity and so for many can make heat painful), and also
a genetic aptitude for high temperatures (something that,
according to widely available statistics, is more rare
amongst those with red hair, for inscrutable DNA reasons).
  While taking it easy horisontally, and--for him, the
all-essential jazz put on, we would go through a recent
research report relevant for his work and thinking,
typically found on internet and printed out some hours
earlier.
  Then, seating himself in front of the PC, font turned on
gradually larger the more he approached 90, and with a
caffeine-enriched quality drink on the table, he would



come with as deep and sophisticated insights, eloquently
formulated, as I've ever heard from him during my
growing-up. Sometimes, though, with a slowness speaking of
his old age, and often exhaustion would set in just a few
lines further in his manuscript. So a small book, just
more than a pamphlet, took him around four years to
complete. But what a book!
  Nearing completion of this book, and--as it turned out,
of Bratens own life,--a researcher and professor at the
University of Oslo, used to using Stein Braten's books in
her teaching at higher-level psychology, dr. Helene
Amundsen Nissen-Lie, wrote a preface for his little book.
She described there the perceived importance of his work
over half a century and more, and said of this book that
it sums up his most important insights over a long career
in an almost haiku-like style. One of the happiest and
finest moments of father's last year was to experience
this preface read up aloud with both his daughters and all
his family gathered around him. Some months later a lung
infection led to hospitalization and after some days he
left us, peacefully, knowing that his book had been
completed.

Father always insisted that those who spin theories
not having 'licked empirical dust' tend to go wierd. He
himself had worked in marketing before he theorized over
marketing; he had filmed mother-infant interaction before
he theorized over the inborn capacities of infants for
advanced also emotional understanding of others--and so
on.

Let me also say that one of the things that seemed to be
vital both for father's health and for his experience of
quality of life was his monthly or bi-monthly visits,
with me, to his qualified wise doctor, who took an active
interest in the progression of father's writing.

Now the experience I have of father in late age told me,
as nothing I have ever experienced before nor read about,
that--put bluntly--the brain is not just the brain. And
capacity is not just capacity. Cognition is not just
cognition.
  Nor is 'unlocking' the capacities of the brain merely a
question of 'reprogramming it' nor 'injecting it' with
this or that substance. All that is way too mechanical.
  Nor is it merely a question of giving the body a little
bit more exercise; it is not merely a question of finding
the right music and intellectual stimulation; it is not
merely a question of sitting still and meditating.

Whatever it takes, it takes all that, and more--including
the sense of 'having a function'. As one of his teachers,
the philosophy professor Arne Naess once said in a radio
interview in his own old age--as I recall--"Nothing is
worse than to feel that one is of no use to anybody; that
one is just a bother." If that understanding has got into
how we shape kindergartens and everything from then, more
people could have shaped themselves so that also in old
age, where perhaps they cannot even move by themselves,
so that it would be easier for more to experience their
actual value and keep on unfolding it until, just about,
the last breath.

But what then when memories pass away? A section of the
medical community may then be eager to pass judgement over
the brain and give statistics for just how common it is to



forget such and such when above such and such age and
recommend a little more exercise and salads and such.
These are the same people who happily take people's right
to decide over themselves away from those who they do not
deem fit--soldifying the idea that their human existence
is, even formally, just a burden from a certain point on.
Worse, they may feed a person who is forgetting much some
type of stimulants that perhaps in most cases only lead
to chaos in the brain: yes, it gets more active, but it
gets active in an incoherent way because their chemical
supplement hasn't in it true human intelligence. Their
supplement is like turning up the turbo injection power of
an engine that hasn't got enough oil to keep it smoothly
running. Had they left it slow-running, it might have
retained its coherence; there may be ways of increasing
the coherence; and then--when the brain itself knows that
it makes sense, the intensity can go up for a little
while.

For what is worse for a person who does not remember that
the brain is getting a sort of stimulant that makes it
begin to construct reality by plucking disjoint memories
and making up stories which make no sense?

A person who does not remember in daily life may still
have coherence, and may still have by far most memories
intact. If the person is very quiet and claims not to
remember, all that may be true--at one level. But it may
also be the 'brain on its own' giving a report. And the
very same person, just some hours later, giving a fullness
of conditions satisfied--vaguely like the idea of Joseph
Campbell that each should 'draw a mythic circle' around
himself or herself daily as a ritual and go into a
transcended state of consciousness--can become almost
"oceanically present". The vibrancy of the person can
reach into the furtherst depths. The presence of memories
of the meaningful kind, and with perfect clarity, may
emerge in an individual who, due to old age, barely can do
the simplest things some hours earlier and appear to all
extent to be mentally 'gone'.

And so, I have an interpretation of this, and it is, of
course, massively in tune with my own take on the
interactions between manifest matter and the depth-
energies that are more subtle and which somehow connect to
the quantum. My direct experience of my father going from
his 'day-mood' to his 'writing-mood' was that of a nearly
absolute transformation: the first is merely the brain;
the second is the brain tuned into something much vaster--
his self, his soul, his mind. And the happy-go-lucky
officers of the harshly mechanical medicine world lives in
complete denial of this to me rather obvious fact: that
the human brain is just a ripple compared to the larger
thing, the human mind, and the task of the former is to be
an instrument of the latter, and the key to that is no
medicine but a lifestyle such that I just gave example of
--which includes, and luckily for my father he had that, a
passion to unfold beautiful thoughts to the world.

That smartness that is so self-obsessed with its own
smartness that it sees nothing but smartness and the lack
of it, has no smartness. That smartness-which-is-no-
smartness is summed up in two of the hottest, and
stupidest, concepts on the planet: AI, and IQ. The
present-day 'believers in AI' have a fetish so strong on
algorithm that they aren't even capable of calling an



algorithm by the word 'algorithm'--they say anything but,
'super-intelligence', 'generative intelligence', 'God'.
Their machineries may fool a section of the population
adequately that this section says, "These machines have
mind", but it is all a smartness that lacks the depth and
humour and reality-touch and empathy that the human mind
and its intelligence, its genuine intelligence, can have
to a degree that cannot be measured, and which is
genuinely infinite in my opinion. And those who then set
up 'measurements of intelligence', or 'intelligence
quotients'--they are merely the foot soldiers of Newton--
the hardest, least fascinating aspect of Newton, that is
(for Newton in later years was far more far-reaching,
being, amongst other things, one who delved into alchemy).
They are fascinated by the view of the universe and the
human being as an advanced form of clockwork, and they
make a filter so that they cannot anymore perceive neither
mind nor intelligence, and it is called, 'intelligence
quotient'. They put their mediocre numbers on people,
thinking they have encapsulated thought; but all they have
encapsulated is their own stupidity, manifested in their
petty schemes by which they attempt to measure the human
being.

So the brain is not just the brain. The human personality
is something infinite and the brain is more finite; and
the pathway from the little mind of the brain on its own
to the full human self with powerful personality features
enabled such as an empathy that comes along with
intellectual intuition and its own memory requires the
art of regenerating the fullness of coherence in daily
life, an approach to meaning and meaningfulness, and to
both work and relationship; with the mechanisms of the
body not crudely stimulated to achieve false intensities
but with the patience that comes from honoring the
necessary unknowingness we must have about the human
brain/mind.

It is always in this light my notion of FCM should be
understood: that the vastness of the human mind, also, of
course, that of the programmer, can express itself--not
just as a wonderful novel or painting or piece of music,
but also as a program, and in that expression something of
that mentality persists; but the priority is always the
living mind and it must not be confused with any such
crystallized expression as an algorithm. In entirely other
words, which I used fairly much in an earlier phase of
exploring this, the mind is The Uncomputer.

And, as we saw in the earlier chapter in this volume when
we explored infinities, you can, as it were, go through
the rabbit-hole and see numbers as something intensely and
vibrantly other than mere mechanical units. A finite
number is, as it were, an algorithmic-like expression--a
crystallization--but that which crystallizes it is beyond
all finitudes. The numbers are as music to the mind, but
it takes the human mind to perceive them as such--not as
static abstractions, but as commentaries on the pulsation
of the mind, which is infinite in nature, in life; a life
that has its own natural inborn thirst towards ever-more
creative coherence (confer the PMW principle in Super
Model Theory; see links in the start of the book to the
texts about this).

The brain is not a machine and the mind is not merely the
brain. Nor is the brain merely a 'quantum machine'. As



Stuart Hameroff, brain researcher, likes to say, it may
well be a quantum orchestra. We go for that, if by
'orchestra' we mean jam session like, not regulated.

In the decades to come, big tech companies, dominating the
planet with their fake-mind algorithms, must make a
decision: do they wish to push tech away from having the
role it has today, which is to be points of communication
between human beings, and become merely a tool of
knowledge and dry commerce and in which anything personal
is merely an imitation? If so, the machines will get
boring and people will go to the parks and to the cafees,
rather than risk loosing face to their algorithm of a
smile. And perhaps it is just as well: only that we cannot
build societies on fakes. For my part, I suggest: let us
both have machines, and cafees and parks and beaches and
all the other analogue genuine meeting-points of human
beings, and human beings and animals and nature; but then
the machines must not be made sophisticated in ways that
could cause harm to the immediacy of the I-Thou nature of
natural society. Humanity deserves better tech than over-
glamorized "AI" products, products that with utter ease
can become instruments of worse types of totalitarian
societies than anything seen in history. The ethical
programmer decides that no further development along the
lines indicated as "AI" should go on and that existing
devices powered on those premises should be, to that
extent, turned off; and politicians must make rules of
this sort; and companies trying other pathways must feel
the strength of anti-AI laws coming down on them.

As Frank Herbert in his Dune novel starts out by
indicating: a task of humanity is to be masters, also of
technology, and all else requires the fiercest of
revolutions.

With FCM we're doing our quiet revolution. Let's proceed
to some hard-core number thinking, laying out how we wish
to configure the FCM funds in our upcoming computational
node networks!



*FIRST SKETCH OF A MORE CONCRETE TASK/MATCH NODE NET*
This is a chapter in which the writing that a programmer
typically will do in privacy, notes that are not really,
usually, intended to survive the program, are being made
so as to construct a program. When the intent is to throw
the notes away as soon as the program is complete, tested
and running smooth like silk, the programmer will easily
allow himself or herself the use of incomplete sentences,
abbreviations that only make sense if explained but they
are not explained, and jumps in the construction without
clarifying clearly that the earlier notes are considered
obsolate at some point. Here, I try to walk a middle-
ground between the two extremes of doing such local
sketchy explorative partially meaningful writing, and an
explanatory writing. But as long as the program under the
particular consideration remains to be done, it is always
possible that, when the program is being made, a totally
new insight--or many of them--arises as to what one really
needs to do, which may overturn at least bits of the
construction. My experience at this point allows me to
emulate in mind the upcoming program with some more
clarity than otherwise, I believe.
 Obviously, robotic hardware is here in my office but the
concepts deserve to be clarified, and the program made to
work at a conceptual level first, and then, in the
completing volume, number 5, we will bind this fully
together and--a promise--that volume won't be published
before the robot is strolling around in my house, not
wheeling over my toes and not pushing chairs around, but
doing some useful things that actually are helpful and
which involves active camera use at least in part of the
tasks.
  The robot? Robots.
  For by 'the robot' I mean twin robots. So collaborative
tasks are going to be programmed. But as we have seen, the
concept of collaboration, at least in a general sense,
more or less runs through the whole notion of programming,
any programming, from the very start. With the ideas of
handshake through graphical screen letters and such, we
have enough as a start.
  If you have a printer, in order to make most sense of
the upcoming notes, print out the page in G15 app number
3,333,333, ie, the Third Foundation app, that shows the
FCM node structure. When you mount that app, up comes the
start menu at H:1, and it gives you a direct link to the
card like F:2232. You will find the same overview card in
any of the apps that contains the Third Foundation but if
they have been even slightly extended, for instance with
new two-letter words, the card number will generally be a
higher one. In such a case the function 'scan' will tell
you where it is: type in the word 'scan', and type in eg,
  ten triplets
and also type in f1 or wherever the first card is, and a
number like 99999--anything big enough to cover a big
range--and it will come up with the card, and you can
type, of course,
  car
in order to see just that card.
  At that card, we're told such as that the first
position, which is #0, is the level number. The level
number, as you might recall, tells roughly of the
execution sequence of the nodes in the network. A higher
level number generally means tht it is performed later in
each loop cycle. Then comes its name--and the name is
hugely useful for it reduces the need to memorize the
numbers of the nodes when you need to link them to each



other, and linking nodes to one another is one of the
things one does pretty much when we do FCM. There is a
routine to convert the name to the node number and then
the node number can be put into the array that has the
links from one node to other nodes. But by looking at the
program that sets up the nodes, the name will be visible--
even if in many cases only used during compile-time of the
program. (Though the name-search is fast enough that it
can and sometimes should be used while running the node
network as well.)

At the card we further see that the areas of links start
at position# 50, and there can be maximum 100 of them, and
the quantity of them goes into position# 47. My mnemonics
for numbers is that 47 often refers to robotics. So it is
part of a sense of numbers to design it this way.

Each node has ten triplets. Now what that term means in
G15 PMN FCM is that there are ten times three free
positions for putting algorithms and a little bit data to
action with each node, and it is done in this way:
  The first value can be anything you like,
  the second value is the number of an fnact, ie, the
number in the array of warps to functions that are driving
the node network and which is different for each FCM net,
  the third value can also be anything you like.
The first value of the first triplet is at position# 10 in
the 150-number size fund or foundry, and it is typically
used for something of signal importance about the node.

Briefly, the rest of the positions are these:
  #40-#46, free numbers, used at your leisure, called in
the program for Luxury numbers.
  #48 'Top priority?' Starting with this volume, we let a
range of coordinating nodes all be called 'high priority'
but reserve the phrase 'top priority' for the what we
might call 'the absolute necessary constraints. (Note that
the 3rd Foundation calls #48 just 'high priority'.)
  'Ethics nodes'--necessities that must all the time be
regarded as more important than any particular task--such
as not to bump into a living being or a piece of furniture
when washing the floor--there is the number '1' here,
which, in G15 PMN terms, inspired by the infinity theorem
on natural numbers, is of course called DANCE. For all
other nodes, the number is BASIS (ie, zero). No lower
priority node can turn off the top priority setting of a
top-priority node--that is our programming policy. But
you yourself as programmer must be the ethical person who
takes responsibility to carry this through. The computer
programming language is, and must be (in order to be,
indeed, a proper programming language) absolutely
obedient to you. But it also means--watch it, when you set
up top priority nodes. They really must be made with
sensitivity, for they concern also how well versus how
not-well a robot matches over its environment. If a top-
priority node is associated with a low-quality measurement
of the situation, the robot may enforce incoherence.

We're going to make a decision here, that follows from our
earlier chapter on what computational node networks are
all about, and which is coherent with the excitingly open
FCM framework as laid out in the G15 PMN Third Foundation.
Every bit of this framework has as its foundation what I
took to be a carefully checked intuition. There is no tool
of logic that can foresee all design possibilities and
challenges: and so the best you can hope when you are



designing something within a designed framework is that
the designer, or designers, had adequate intuition. This
many years after the conception of the FCM it is clear
that the intuition is a genius one, if I have to say it
myself :)

Here's the decision: we'll do an MT style of nodes; and by
that abbreviation, I mean: every node will be BOTH a
matching node AND a task node. We're talking of each node
having the full set of assigned variables and
possibilities associated with both types of things--both
the summary of features as analyzed by the computer over
the inputs to the robot, and the performance of motoric
actions usually through a range of subtasks. Now this
decision doesn't mean every FCM in the future will follow
this pathway; but the book is meant to show an example,
and hopefully a very good example indeed, of how it might
be done. There is no absolute law that says that a node
must be 150 32-bit numbers either; it is just that it
turns out to be eminently useful in a vast number of
cases; but we can imagine cases where different-sized
nodes are used.

I need a breathing-space in terms of a coffee and a minute
or five before writing on, and, true to the jam session
like writing which hopefully you the reader, now or at a
later point, engages in, I will shoot in here a meta-
physical perspective on how G15 PMN might power anything.
'Meta', in the sense that goes back to a labelling of
Aristoteles' books--whether by himself or his students,
for most of his works are the result of their note-
taking while he was walking around with his lovers and
pupils (and for which there were no distinction in the
Greek society, remember)--is a word that means something
like 'after' or 'beyond', and in the sense of 'meta-
physics' we're talking: let's not merely think of the
particular forms inside nature, inside what is 'born'
(physis), but let us stretch our gaze up and to the
horizon and grasp the whole and consider the beyondness,
such as what lies beyond all this. Metaphysics, in other
words, is an attempt by mortal human beings to perceive,
in glimpses, something of the view of the higher beings
at Olympus, --the olympic perspective (not to be confused
with the adoptation in modern society of this in a sports
context; however much the Greeks were obsessed with
sports, indeed with nude sports).

Now,--and this is in the Super Model Theory text which is
also at K33 in the 3,333,333 app: first-handedness may be
the criterion for algorithm not just 'here', in manifest
reality, but also in subtle reality. If bishop George
Berkeley, who imagined that God daydreams the world into
existence and it persists due to the sophisticated and
loving persistence of God's ongoing day-fdreaming, has
some right in his opinion (from classical Western
philosophy, although other parts of the planet, including
the Sanskrit cultures, have their versions going much
further back), then we might as well assume that God not
only day-dreams matter into being, but--and indeed prior
to that--all possible angels, or muses, as well as all
possible helpful machinery, including first-hand computers
--indeed 32-bit computers, because if mind at essence
levels is at least fairly much like experienced mind at
the manifest level, then when 32-bit makes sense in terms
of number sizes here, it might also make sense there. All
what I have so far said is part of the Super Model Theory.



  In it, all matter is founded on FCM-like node networks,
and all of these have algorithms; but nothing of this is
performing on its own, but rather has concious, living
steering and guidance the way living programmers and
interactors with computers and robots up here on the
manifest level. The muses, in other words, are master
programmers. This is trivially true if you have read all
my works.
  And so, how can a universe so vast it is completely
staggering with super-complex galaxies again containing
ultra-complex planets again containing mega-complex plants
--and, where we are, also fundamentally
super-sophisticated human beings--be run by a 32-bit
computer? Answer, by a network of them so vast that all
networks we have ever seen dwindles completely in
comparison. And to keep the numbers 32-bit, that network
must have many features of a hierarchy. So, to the
coffee.

Yes, all right, the jam writing session goes on. So we're
now throwing forth projections about how a simple FCM
program could be made that, despite simplicity, neverthe-
less has adequate complexity to handle a vast range of
pretty tough robotics challenges. Not all of them, but a
pretty vast range. We do not lay down how FCM should be
done at all, but merely show how it can be done.

So, every node can be having features of matching--such as
'degree to which cups are washed up'--and features of
task--such as, 'wash this cup'. The programmer decides
whether to combine matching and task in one node, or not;
but every node is prepared for both. That's how we propose
this application within the FCM framework as included in
the Third Foundation is being used; and we propose that's
a pretty good idea quite often generally, as a rule of
thumb.

Vaguely, doing a task involves also matchings--when we are
talking any higher-level task and not merely the concrete
motoric tasks such as 'lift-the-arm'--and so doing a task
may typically require a bit more info than merely doing a
matching. However, doing a matching may often only be
possible by doing tasks. So the programmer's mind must be
honored, and given room to formulate all this. But here's
a way it can be structured:

Let the first triplet, of the ten, be dedicated to
matchings, and indeed the main value, in permille, in
other words, in a number from 0 to 1000, tell us the
degree to which an either/or feature is the case. The 2nd
value in 1st triplet can be function to set this. (When
a function number is set to basis it means that there
isn't a function there, but it can mean that the value is
set by another function, whether in the same node or from
a different node or whatever; this is all up to the
programmer to structurize.) The third value should say how
likely this is, again in a number from 0 to 1000. The
first value of the second triplet gives a value, this
time theme-specific, for what the matching is, when it is
not an either-or case. (For quantum-like measurements,
that could be a rotation number; see Super Model theory).

So, if the matching is over a yes/no question, like,
"Is it messy here?", then the main value will say how much
messy it seems to be, the extra value (the third value of
the first triplet is often called 'extra value') will say



what sort of probability is assigned to this matching--
from 0 (no trust) to 1000 (total trust). And the function
will do what it takes to get this matching worked out. In
the case of a robot doing manufactoring work, it may want
not simply 'are there more items to put in the box' but
'how many items are there to be put in boxes'. And in such
a case, we put the quantity of items in the first value of
the second triplet. The one obvious thing we should also
mention at first connected to matching is the clock of
the matching. That can conveniently be decisecond, ie,
one tenth of a second. As for good robotic programming,
usually, things don't go all that fast: though in special
cases like an FCM program running a train in a tunnel a
more appropriate measurement might be hundredth of a
seconds--so the FCM program more quickly can get at real
significant matchings that may influence the security of
human beings. The idea of putting algorithms to work for
driving people through city streets in cars in insanity;
because algorithms are context-dependent but city streets
are context-changing by the very nature of human society.

So let's put the decisecond number into the third value of
the second triplet. Now let's say a word about timing and
clocks and programs: a G15 PMN program is defined as
something which runs on a G15 Personal Computer, powered
by a G15 chip (or a practical virtual implementation on
this on a somewhat different platform), and for stability,
it is recommended that the PC is rebooted twice a day,
and more often when complex and demanding programs have
been performed. That is also in alignment, of course, with
the notion of setting boundaries--not just for numbers in
theory, but also for what numbers we need when timing a
program. Deciseconds as "timestamp" can only work in a
32-bit context if reboots are often enough that the
numbers don't overflow. Reboots are not sign of weakness
of the system, anymore than sleep is sign of weakness of a
human being. These are healthy ingredients of renewal and
essential for coherence of the machinery.

From here, let's consider that we now shape the task part
of the node. In using some of the first triplets for the
matching aspects, let's say that we use the fifth triplet
and onwards for the task aspects. If you make an overview
over the positions of each of the ten triplets, starting
at position# 10 in the fund, starting with 10-12 for the
first triplet, and completing with 37-39 for the tenth
triplet, you'll see that the fifth triplet is 22-24. At
position 22, then, we have the first value of the fifth
triplet. Let us suggest now that this number is used by
the task-node itself to keep track of how far it has got
with steps. In upcoming chapter we list more fields for
our FCM network: at position# 21 we have a 'soft'
activation field, in contrast to the more 'hard'
activation at pos# 49.

When we wish a high priority task to 'figure out' which
lower priority task--ie, substask--to do actually, it may
walk through the steps of a subtask rather 'manually' and
summarize match numbers for each step somehow. The first
and second triplet values beginning with the fifth
triplet can be used for this sort of thing; we need it
already in the app we're making here in this volume.

The function can relate to the task part of the links in
the foundry, ie links to the subtasks, one at a time, to
be performed. However it may be much more involved than



that: there may be a need to constantly check against
various matchings in order for the subtasks to go ahead;
and to get some matchings sorted out, the robot may have
to change its direction to fixate its camera on some
object and so a whole range of subtasks may be invovled
to sort out a significant matchings before one subtask can
be considered completed and the next one can begin.

Without assigning positions yet to every number, we also
need a decisecond for when the task begun; a decisecond to
indicate when it last called on such as a subtask; and a
decisecond to indicate when the present task was
completed. And indeed this particular field may be the one
that we can use to check whether the task has been
completed or not, when 'seen' from another function. A
basis value here indicates that the task, supposing it has
started, is still unfolding; while a non-basis value here
tells other functions that it has completed. When the
robot has got to have a task done within, say, the past 3
seconds, it nullfies this fields and initiates the task.
And a way to initiate the task can be--in addition to
ensuring that the main 'is active?' field of the foundary
is set to DANCE, ie, 1,--to set the task number to dance.
In other words--and this I see now that we write about
it--the number of the task being done is the number of the
task ABOUT to be done. Ie, when we want something done via
a node, set its present task number to 1. Maybe there is
only one task to be done through that node; maybe there
are more; but in any case, that's how to activate it.

*GETTING CONCRETE ABOUT WORKING WITH THE 14 FCM 
MATCHNUMS*
In this book, we will, as they say, play in shallow water:
the FCM we do here, with the node networks, are working on
RAM, it's all software, so that we can concentrate on the
concepts before we put them to physical use--the physical
use will then be fairly easy, and we'll go through that in
the next volume, which completes this series, and of
course regularly in other books and book series.
  In the previous chapter, some of the main points
involves deciding on the structure of each node--and as
FCM is defined the Third Foundation, that structure is
indeed very flexible; so we must define before we put it
to use. The first triplets, as we say, are dedicated to
the Match aspect of the node--ie, its 'input'.
  As there are ten triplets, the fifth triplet is about in
the middle, and this is dedicated to the Task aspect of
the node--ie, its 'output', esp the output that concerns
affecting something by means of what we have alluded to
before as Elementary Actions. These adjust an area which
could otherwise have come from the robot cameras, an area
in software, indeed an image of the 160x112 type that we
have found meaningful as input to the node networks in
this context. Translated to physical robot terms, these
could represent items on a table that is moved by an
robotic arm. The motion signals to the robotic arm would
be 'elementary action', while the input from camera would
show a changed 160x112 matrix; and it's up to the FCM
network to match over this input and calculate new
elementary actions until enough has been done.
  The app # 1005768 was made and tested before this book
--or at least the programming in this book--begun. And so



the programming of this book will concern equipping that
GPS stuff with a whole new FCM network, or another aspect
of FCM, which is the robotic computational network proper.
And that app, which you ought to find on g15pmn.com right
now, is featured alongside the app that is coded, tested,
corrected and put out on the app list alongside that one,
and numbered 1005769.
  So the app #1005768 shows this matrix--when you start
this app, recently made and part of the 'fic5' robotics
set of apps, it is ready to show you the 'sine wave',
which is match image number 14, --the completing match
image. And it shows it when you go to the field that says
'14' and click 'i' there. This shows what is very clearly
a wave, and ALSO very clearly an either-or matrix of not
that many pixels. It has 160 pixels in width and 112
pixels in height. So a loop in G15 PMN of this kind would
give you an 'i1' that goes from 1..112 and an 'i2' that
goes from 1..160, the latter being 'x', ie, width, and the
former being 'y', ie height:
  LL:112
  LL:160
  | here, use i2=x
  | and i1=y; the
  | pixels are 0
  | and 255
  LO
  LO
A calculation I did just now within the spreadsheet in
that app is that 112 times 160 is 17,920 and that is
indeed the same number that match image number 14 gets as
match value #14. To see this image in Gem, open f10000
plus 220 cards times one less than the image number. That
calculates to f12860 if I'm not mistaken. So when you open
it, the first thing you can do is to flip it vertically,
by the click on  followed by '2'. Then it is in upper
left corner of the GEM image view. Since mouse pointer is
used only at rare occasions in GEM, you might as well
point the mouse to the lower right corner of it to help
you to figure out how to use GEM to modify just that part.
  Apart from a typical 'noiseline' or two at camera input,
most of the 112 horisontal lines of pixels make up the
matching number, so that the more matches of bright=255
pixels against the match image, and the more matches of
black=basis against the match image, the higher the match
number. If you in Gem try to invert the image at f12860 in
that app #1005768 you'll get a match number that reflects
one or two noiselines, ie, something in the nature of
hundreds rather than thousands. All things about match
have to have a little bit approximation about it, because
it is going to work in the ever-changing lights and
angles as reflected by robotic cameras--and these may be
sometimes jumpy, as they are mounted on a robot that may
well be on the move. A program cannot be 'control-freak'
about these things; the FCM program must accomodate.
  In Gem, if you quick-save via  you will set disk#
in the Spreadsheet to 3 and card# to 9000 and image number
to 1, in the C15 field, before you click 'I'. If you wish
to have that as permanent setting in that spreadsheet
while you go in and out of Gem and try things, you might
want to save the spreadsheet to another location, like L1.
If you then start the app as normal, it will have its
original spreadsheet at K1 while your own version at L1.
The spreadsheet at L1 doesn't contain any G15 PMN code at
all--it contains texts, numbers, and any formulas that
have been entered via the  button. But the program
that comes along with the app #1005768 has assigned some



an extra algorithm to the field C15 of that spreadsheet,
and this is tied up to the letter 'i'. So, the GPS, or
G15 PMN FCM Spreadsheet in its original app, #3555558,
is a little extended when it is used in the robotics
context. One particularly neat extension is that which it
calls 'letter warps'.
   A letter warp for GPS simply means this: if you wish to
use the alphabet, a..z, to provide extra functions to the
spreadsheet at all its available positions, the setup for
it is super-simple. Just duplicate how it is done in any
app that does set up letter-warps, such as app #1005768,
and you'll get it right. Be aware that some algorithms,
including the image fetching that happens when you click
'i', displays what it displays on top of a large number of
spreadsheet fields and these should not be used at the
same time, at least not for anything that has to be on
display. Also, the behaviour of the GPS when extended this
way may be other than expected when PgDn is used--that all
depends on how the letter-warp is made (ie, does it check
for whether a PgDn has been pressed?).
  GPS can and will be extended in many ways to accomdate
robotics and other types of programs. The way the GPS is
extended in #1005768 may be just a fraction of how it is
extended in another robotics app. The policy of G15 PMN
app publishing, as I intend it, is that apart from
occasional fixes that are discovered later and which is
essential to its function (and for which there is no
obvious easy workaround), when an app is published, it
will remain in that state and be a 'milestone' that you
can always go back to and find that it works in all
future. As G15 PMN has, as project, evolved over the past
decade, it has not been cluttered by acts of imitation
over fancy-but-not-essential extensions as found in most
existing programming languages.
  Let me just insert a comment about how other programming
languages and projects are typically doing it: they come
along with a perhaps fairly fascinating program and a long
"version number", with many dots and digits. Scroll ahead
five years and fetch the program, and it is a totally
different program in many senses and quite possibly,
several of the charming things that might have fancied you
in its initial version have been eradicated. Maybe not
just charming things, but essential things. And so, while
the progression from one version number to a "higher"
version number is called "upgrades", they are often
more precisely called "rewritings". And when one sees a
list of "earlier versions", including the version that
existed five years ago, one can bet two-towards-one that
it simply won't work anymore, because it relied on
hundreds of supporting packages each which have undergone
"upgrades".
  In contrast, the robotics programs made now, in G15 PMN,
not only exists alongside all the other apps ever made for
G15 PMN, and it is beginning to be a respectable quantity,
--but also, in addition, the robotics programs made in the
newest implementation of G15 PMN on the newest machines
work, usually either directly or with an extremely simple
modification, also for the first implementation of G15
PMN. This is the way to grow a knowledge base.

Back to the match numbers. The fourteen match images are
matching any binary (ie, with either bright pixel field or
non-bright pixel field) image of size width 160 and height
112 against the simplest geometrical ideas--such as
square, circle, diagonal, parallel vertical, parallel
horisontal, and some more, including such a 'wave' that is



derived from the Cosine and Sine functions which are used
to give the x and y coordinate of a circle. So it cannot
be much simpler. The bands used to 'draw' these images are
thick so that it is the idea that matters in some abstract
sense, rather than trying to match a fine drawing. If you
wish to use these fourteen match numbers, ranging from a
basis level of some hundreds up to theoretical maximum
full match of an identical image of 17,920, to describe in
some detail a drawing in thin lines the obvious thing to
do would be to enlarge this drawing and do match numbers
over first one portion here, then another portion there,
and so on, in addition to a matching over the whole. In
turn, nodes would be set up to reflect how these
coordinate one another to describe features of this image
so as to distinguish it from another image that also uses
fine lines.

It is a good idea to conjure up some images in the G15 PMN
'native' image editor Gem that are suitable for such
match number generation. As said, it can be a good idea to
load one of the existing match images as a start, eg the
one at f10000 or the last one at f12860, or any in between
--exactly 220 cards separate each. Then, usually, flip it
vertically by  2 before you work on it and adjust the
mouse to point to lower left corner, and flip it again
vertically the same way before you save it, eg to C9000 by
a click on . To draw on it, the easy and obvious way
is by means of the  button, number '2', which is
called Filled Rectangles. These you move around by arrows.
You paste them in by a click on  and can keep on
moving them around, and 'slimming' them by pushing them
against the corner. By a click on  key (ie, indent,
usually positioned on the left side of the keyboard just
underneath the numbers), you switch the 'mode', ie, how
fast the arrows move the rectangle. Click  when done
on the  work each time.
  When you are ready to make a pattern that you really
wish to save and do match number over, you should, when
you clikc , start by option '3' there, which is to
set the 'tone'. The correct tone, of course, is basis (0)
for black and bright green 255. So choose either of these
for your rectangle and move it up and to the left until
you are within the topmost 160x112 range. Click  to
put the rectangle in,  when done, then eg  to
save and  to exit and get into the app and see what
match numbers you get.
  When there is exact overlap of black areas with black
areas and bright green areas with bright green areas, in
those cases you get the highest match numbers. Perhaps the
most educational thing to pay attention to initially when
you learn to work with these match numbers--which, yes,
are part of a great deal of upcoming robotic work, and so
are important for you to learn as an expert on FCM--is to
single out the two or three highest match numbers and one
or two of the lowest match numbers, and figure out why
this makes sense by looking at the relevant ones of the
fourteen match images.



*NUTS AND BOLTS OF THE FUNCTION CALLED "TRANSLUCENT"*
If you recall our earlier reflections over just what a
computational nodework is, I think you will agree that the
the essential elements in a computer is algorithm and data
and that all talk of nodes is just a description of same.
Just as there is not just one way of ordering the many
items that may be on a large workbench you have in front
of you, so there is not just one way of 'doing nodes'. Any
program, no matter how large, how complicated, how
dedicated to matching over 'fuzzy' data such as robotic
cameras and making meaningful motoric robot motions can be
stuffed into a single node, into two nodes, into three
nodes, or into ten or a hundred nodes, with more or less
order.
  What we would like now, and it may possibly be what most
of this volume is dedicated to, is to make an example of a
robotic node network that has in its the sort of order
that invites a vast number of advanced, even hyper-
advanced extensions. The task, therefore, is not at all to
use as few nodes as can be for our inside-RAM 'virtual'
robot, but rather to use enough nodes that we get a real
programming experience as to how to make many separate
nodes that then interact in a convenient manner. We are
not at all interested in making the shortest algorithm as
possible to get the output on the screen that we may be
looking for--in contrast, we wish to create an
instrumental robotic example of FCM nodes in which
expansion is easy as a breath. A little bit of redundancy
in how we set up nodes and how many we use is, therefore,
just what we need.

If you read this as a developing G15 PMN programmer and
want to get a good grip on FCM, look up the definitions
for the TRANSLUCENT and the FCM functions in the third
foundation. We try as much as possible to avoid making any
changes to these essential definitions, trust that the
design intuition that went into them is good. Try and make
as much sense of these functions as can be--they are,
after all, short. They use only standard G15 PMN
functions and normal sorts of arrays, like FCMINDEX, and
matrices, like THISFCMNET. The FCMINDEX is supposed to be
always sorted according to level number, and the network
or networks are supposed to themselves initialize sorting
of the nodes in case level numbers have changed (typically
they do not change).
  The FCMINDEX has warp numbers--not just position numbers
but warp numbers in it, so that it warps directly to the
first number in each node, which is the level number; and
this is why the BS two-letter function sort works so well
with it. (Be aware that comments may sometimes be less
accurate than the tested code--in this case, when you look
up defintion of FCMINDEX, it is said to have 'numbers' for
the nodes in it. It should have said 'warps' or 'warp
numbers' for the nodes in it.)

One feature you might pay attention to when you try to
learn more about the TRANSLUCENT function (I write it in
capital letters not because it is inside the program in
capital letters, but in order to quote or highlight the
word as in the sense of an exact syntactical name of a
program bit), is this: inside the loop that again and
again reloads the nodes and performs them dutifully, the
variables are also loaded in again and again rather than
stored locally. The variables of importance here are
FCMINDEX--the list that, via warps, has an overview over
all the nodes in the present node network that the loop is



performing--and FCMINDQTY, or 'fcm index quantity'--the
variable that tells how many nodes are in FCMINDEX. In
addition, THISFCMNET, which has the node matrix in its
normal, not necessarily sorted form, is, as policy, used
consistently in the algorithsm called from within the
nodes themselves.

A comment in the program connected to the TRANSLUCENT and
FCM functions says that these node network variables may
be changed while the loop is running--if done
"thoughtfully". Let's now bring, indeed, some fullness of
thought to doing just this. Here's the motivation: the
GPS, the G15 PMN Spreadsheet, is spreading itself rather
all over the place with its use of level numbers. While
technically it is possible, and in some particular cases
even advisable, to mix the GPS node network with another
network into a single network with one index, the more
obvious solution is to have one or more separate FCM
networks going when we use the GPS as frontend to show
some results, and input some variable values, and such,
and want to build up perhaps also extremely sophisticated
robotic node networks running in the same RAM, in the same
program--and even within the same loop, TRANSLUCENT.

So when a node refers to another node by means of a number
that number refers to the matrix. A matrix is typically
described, as you know, by X for width and Y for height.
For most matrices, X and Y are given as the alphabetical
sequence suggests, namely width first and height second.
In some cases, it is esthetically (or for other reasons)
more pleasing to write it the other way around, and in the
spreadsheet, the four columns are dominant in how we write
a reference to a field there--like, A15, B24,--and so the
notion '4x135' makes sense there, with 135 lines.
  In a sense, a text document is a matrix and each line of
characters can be identified with its Y coordinate; the
X coordinate refers to which position it is on the line.
The line number, or Y coordinate, of a node matrix is such
that each node can be identified by its Y coordinate,
while the X position refers to the various data in this
node. If you have used G15 PMN for a while, you will know
that the difference between a warp and such as a Y
coordinate is that while a warp is 'lightening fast' and
ideal for large loops, a coordinate number has to be
translated into a warp to be of any use, over and over
again. However the nodes in an FCM network is typically
set up so that heavily computational feats are done more
by clever algorithms inside a node than by spinning over
lots and lots of nodes. After all, the nodes must be
programmed in a first-hand way to be properly part of our
whole enterprise, and that means, in a way, that nodes
often are 'handcrafted' (except for a smaller set such as
the spreadsheet matrix of 4 times 135 where a loop sets
them up to save coding space).
  Also, if you wish to make an FCM network so that its
particular makeup after performance for a while is stored
to disk, coordinate numbers rather than warp numbers are
definitely the way to go, because a warp can be different
from one program run to the next (they depend on what
possible extras have been preloaded, and even minute
actions like creating a quote of a tiny text to be printed
to the screen may affect the warp numbers of the next
compilation). This also shows why the functions hooked on
to the nodes in FCM are put there usually not as warps but
as numbers that refer to the FNACTLIST array of functions.



  The subroutine in TRANSLUCENT that calls on a node's
algorithms is called PERMUTEACTS. It uses the FNACTLIST
and looks at all the ten triplets in the 150-number space
alloted to each node. In the middle of each triplet there
is either the basis value or the number of a function in
FNACTLIST that is to be performed.

The functions in the FNACTLIST in turn, typically refer
to THISFCMNET, unless they are of a particular kind that
should directly address the node network matrix for
instance so as to change THISFCMNET. THISFCMNET is a
variable that, with the GPS, is set to the value of
FUNDNET, which typically is the first matrix of nodes in
any use of FCM as defined in the Third Foundation G15 PMN.
In the case of the GPS, it sets aside five nodes for each
field in the spreadsheet, and extras also, to get the
whole shebang going.

So to make a node network that interfaces beautifully and
seamlessly with the G15 PMN Spreadsheet, we now know which
variables and functions to pay attention to.

*GETTING THE G15 PMN FCM TRANSLUCENT LOOP TO DO TWO 
NETS*
We're driving on with 'hardcore programming' now in this
volume and when you have time to read it while also doing
your own bit of G15 PMN programming, I bet that you will
get questions that you wish you can put to me and get
instant replies on. Remember that when you phrase
questions clearly to yourself--and having typewriter
skills so you type fluidly and effortlessly on a full
keyboard with text editor on screen in front of you helps
enormously here--you may find that you get ideas as to how
to answer the question, perhaps even at once. If you are
the one-finger or two-finger type when it comes to
keyboard work, I suggest you plan to upgrade your skills
to two-handed touch keyboard typing expertise ASAP. A
human brain is masterfully complex, and it needs the
katharsis of clear expressions of a logical, coherent and
intuitive kind that it can reflect further on through the
majestic input of a beautiful computer screen. Your
intuitions flow in and assist the brain in regaining
coherence again and again when you make yourself humble to
this process and indeed also to 'truth' in the larger
sense, and allow time for such meditative writing sessions
which have one function: to give yourself clarity.
  Another person may have a need for a different series of
expressions and so dialogue is a wonderful thing but often
the real clarity, and foundation for good dialogue, comes
from the foundation of doing one's homework at the
keyboard in the form of clarifying writing. Mere verbal
expressions through sound do not give the same full
experience of the expression as typing it in. And it helps
that the screen is bright spring green and black, as this
stimulates but in a very harmonious way.

The Translucent loop is so simple that it both can and
will be used in all sorts of ways also as regards
enabling more than one node network. Here we will look at
the simplest way to do it, which is to switch from one
net to the other and back--ie, toggle net--in one of the
first nodes in each network. Let us see how.



First, what is--cut to essentials--a loop? It is an
algorithm that performs the same lines over and over again
until some or other condition take place. A bit like this:
  *START
    *DO SOMETHING
    *CHECK WHETHER EXIT
    *DO SOMETHING MORE
    *JUMP UP TO START AGAIN
In the philosophical understanding that we should not
necessarily cater to infinity when we can bring in a
definite number, we often (confer earlier volumes) make a
loop that is going on 'indefinitely' like this--the first
number being 2 with 9 zeroes, ie, two billion--which is
not far from the 32-bit upper limit of number sizes:
  LL:2000000000
  GOODACTIONSHERE
  ISEVERYTHINGDONE
  N?
  SE
  EX
  LO
One can also push 2,000,000,000 into the loop counter,
which is i1 for the first loop, i2 for any inner loop,
next to it, i3 for inner loop inside that again,--in order
to make it exit without leaving the whole function with
EX. So TRANSLUCENT has two loops, the inmost does the net
or nets by looping over all the nodes, the outer repeats
until a variable says that no further 'cycling through the
nodes' is required. The outer loop uses the EX method. The
inner loop uses the pushing top number to loop counter
method. The outer loop don't use the two billion approach,
it starts by a simple LL:1 and does something like this:
  LL:1
  Q1
  GOODACTIONSHERE
  ISEVERYTHINGDONE
  SE
  EX
  LO
The Q1 reduces the quantity of the index by 1, 'quiet' the
number by 1 (and confer M1 with M as in Moderates)--so it
only can exit at the SE .. EX point. The variable that in
TRANSLUCENT marks the exit is understood to be set by the
node network. As the 'LO' is reached, the inner workings
of the programming language hitches the value up by 1
again, but as it doesn't reach 2 this way, it won't exit
through its LL..LO mechanics. It will keep on looping
until the SE gets a DANCE flag, ie, the number 1, and thus
allows the command on the next line, the EX for 'exit' to
perform.
  There are two conditions for a node in TRANSLUCENT to be
considered as for performance of the possible warps in its
triplets: one, that it has any warps in it--the flag at
position 9 in the node tells this--two, that the node is
market as active, and the flag at position 49 tells this.
Note that a comment inside TRANSLUCENT says, incorrectly,
that this flag is at position# 40. So read the code first
and take hints from comments, knowing that some program
comments may be incorrect--even as they may also point out
something. It is honoring the creative process to check
code more than comments when new programming is being made
and it is honoring future programming projects to have the
nerve to declare a program as finished when both the
results of testing, and your intuition as a programmer,
tells you that it is finished. And after that point, one



doesn't go back to fix up such what is later found to be
incorrect comments inside the program. That is how it
comes to be incorrect comments inside the Third
Foundation and it is perfectly alright. Rooting out every
weed of incorrectness tend to come along with new forms of
incorrectnesses, at least in this context. In a
translation of a point made by C.G.Jung, author of the
'synchronicity' concept of meaningful coincidences, what
is perfect may not be complete and what is complete may
not be perfect. If by 'perfect' we emphasize a kind of
absolutely cleared-up state, while by 'complete' we more
think of a process of unfolding organically in its fullest
sense, beautifully, then in many contexts we should seek
completeness, rather than perfection. However for high-
security programs, when it comes to program correction--
through superb testing--it is okay to be perfect as well,
and maybe even necessary. This perfection doesn't not have
to extend to comments inside the program. If a perfect
program has some incorrect comments, then as a whole it is
a complete program :)

I believe that prior to the technology of electronics
which led to the development of the digital computer, the
quest for expressions of the most beautiful and orderly
kind, and with a sense of grand abstraction about them,
led to various 'fetishes' in human culture. One of these
'fetishes' was the geometry of circles and triangles and
lines and axioms around them. Another one, at least in
Europe, was that of the Latin language. A third fetish was
that of studying the texts attributed to Aristoteles in
ancient Greek, texts that survived Christian suppression
thanks in part to Arab scholars (and which Christian
thinkers later seized upon with an attitude to merge it
with bible-inspired thinking). Yet another such fetish was
that of strictly rule-bound forms of poetry.
  With the advent of computer programming, something new
and potent came into human cultural development, and I
believe this was an essential aspect of the best parts of
the hippie cultural revolutions of the late 1960s and
1970s. Thanks to big tech companies, which at present try
to dissolve programming in favour of their snakey AI
products, and who portray copy-and-paste of the outputs,
visual or verbal, from their algorithms as almost
equating that of being a creator yourself, again the
restlessness of a humanity not having an abstract pure
expression for thinking and for personal mind-katharsis
seems to be coming back. In 2024, at the time of writing,
fewer people than before master keyboard, and those that
do master keyboard, should be warned that the profession
of writing is waning, statistically--leading to an
Internet that feeds upon itself in a recycling loop
without the human mind whether as creator or controller,
and without programming being advised to be of importance
to new young citizens anymore. This recycling loop of
mindless material may have in it hypnotic features to
move masses to certain emotions, engage in certain 'group
conflicts' on the Internet, and at the same time may drive
weapons and security systems and id systems so that there
is less and less room for the human being--except
possibly if that human being happens to be a billionaire
who is sole owner of a tech company. If this billionaire
happens to be off the hook, there's no pathway ahead
unless politicians put into the form of law to switch off
all dependency on so-called "AI" in absolutely all areas
of life, and to forbid certain types of particularly



harmful categories of so-called "AI" expressions. In the
long run, this dissolution of "AI" is a historical
necessity--as I see it; it is bound to happen and I'm
doing everything in my power to ensure that it happens.

Let us return to the main topic of this chapter: how to
get TRANSLUCENT, the main FCM loop in G15 PMN, to handle
more than one networks. It is meant to. But how? The
foundation has been laid by it and its subroutines (or,
more precisely, the functions warped to from within the
nodes that it is performing) generally handling all
references to the present node network by means of
variables rather than more directly. In particular,
around the start of the definition of the spreadsheet, we
find:
  FUNDNET
  LK
  THISFCMNET
  KL
In other words, fetch the matrix referred to by FUNDNET,
which is the GPS spreadsheet, and store that reference
into the THISFCMNET variable. This latter variable is used
by TRANSLUCENT, and it is used over and over again, so
that any change will instantly affect how the TRANSLUCENT
loop works. Also, the quantity of nodes in the net is also
stored in a variable that is fetched again and again.

What we're interested in is to get something like this to
take place after each successful run of the GPS nodes:
  NETRBT
  LK
  THISFCMNET
  KL
And also update the quantity. And then we wish one or more
loop cycles with this NETRBT, this NETwork for RoBoTs, and
after that, at a suitable point, it will switch back again
to
  FUNDNET
  LK
  THISFCMNET
  KL
One of the perhaps mildly fun points about level numbers
is that they permit a bit of 'anarchistic' programming--
this is something I learned from the line numbers in an
early 1970s language called BASIC, which preceeded each
line with a number like 10, 20, 100 or whatever, within a
range, so that you could type it into the machine in any
sequence you liked, as long as you got the line numbers
right. And by keeping intervals there, say, between 10 and
20, you could later on add a line quickly between the line
numbered 10 and the line numbered 20 simply by choosing a
number in between, like 15. Let's just remember to get
that sort of the nodes done when we add extra stuff in the
beginning. BS means bubble sort, and it is eminently a
first-hand way to sort.
  The level numbers are in this regard exactly the same.
The first level number in use for the GPS is really high,
and so we can perfectly well add nodes to the GPS in the
beginning, perhaps with level numbers like 10, 20 and 30.
Here, we can have a node that performs some kind of
switching, and we'll now figure out how.

But first, to make this seem much more real to you, you
can do some explorations on the G15 PMN terminal. Start up
a form of the spreadsheet that requires you to type such
as 'FCM' to actually perform it, so that you have all the



spreadsheet loaded in while you use G15 PMN interactively.
Here, type, to get the warp number to visibility:
  FUNDNET
  LK
  NN
Whatever that number is, just glance swiftly across it,
and proceed to type:
  THISFCMNET
  LK
  NN
And here, the warp number should be exactly the same.
Usually, this is a pretty huge number. And as said, these
warp numbers need not be the same from one program run to
the next. It refers direct to RAM. More pompeous and, we
can say, poorly designed programming languages, like those
called 'object oriented', make fancy concepts to avoid
showing warps as if they are afraid of transparent caging
around their machinery; and then comes along other
programming languages made by people who are frustrated
with all the indirectness of the hierarchical classes of
objects and which provide such as a possibility of
'storing a function in an array' and 'passing a function
along to another function as parameter'. These big, fancy
words are just a sugar coating on a cake that has rusty
design. Object-orientation is taking an _approach_ to
programming too seriously, and in that confusion, trying
to pretend that the computer isn't all about algorithms
and data even though it is. It is an amplification of the
digital computer programming language in a meaningless
direction. Historically, the language that had to be
amplified was ALGOL. Existing at the same time was the
rather ignored language called FORTH. ALGOL was amplified
into a hierarhical nonsense that came to dominate the
planet; meanwhile, FORTH, requiring a simplification of
form to be less cluttered and more readable, instead was
given an even more cluttered format in the name of
'generality' and 'independence' of the particular quantity
of bits in the computer. So FORTH was given exactly the
wrong treatment; ALGOL was given a meaningless treatment.
  At the moment of speaking, few are using G15 PMN but I
permit myself to describe its entrypoint with something of
pride, because the advent of something right in a deep
sense is not necessarily statistically easy to see when it
arises, although it will be evident later on, also in
statistical form.
  How did I begin making the G15 assembly language? I did
not at the time visualize PMN. I was watching waves,
staying at a beach area in South-East Norway, looking at
smooth rocks, asking myself: what is the minimum set of
instructions for an ideal first-hand programming friendly
CPU? And how does it core font look? For I wanted the CPU
to come along with a font. Having got the fundamentals of
this going in 2012, I was at another beach, Huk, at Oslo--
not perhaps as grand as the Hvaler beaches, but with its
own charms, and I sketched a way that I could imagine
programming at a higher level G15. The Sun was intense,
and I had a computer screen that could just barely show
anything with all the blazing blue sky around, and the
many bronzed bodies going in and out of the waves and kids
splashing about and crying out loud. So I sketched
something like this:



  HINEWFUNCTION=
  LL:10
  ^Hi!
  PP
  LO.
  HINEWFUNCTION
This I wanted to be a loop that prints Hi! out ten times
on the screen. PMN was born. Once PMN was done--and a
couple of simplifying instructions was added to G15 to
accomodate smooth fast running of PMN--and, in the process
a new font also, the B9font, made while again at Hvaler
beaches--the task was to get the B9edit, this editor that
I have used since for all long texts incl. this volume--
up and working. Next, GEM, the image editor, and again
making sure the G15 had some suitable extra instructions
to help swift showing of its most standard type of images.
After a couple of dozens programs, the Third Foundation
was born and in it the summing up of the physics insights
I had been working on since the 2005 publication on
physics (then trying to use something like a bit of Java,
an object-oriented language to reflect some of the ideas)
was possible, and that is the Super Model Theory in its
mature 2017 form as included with every Third Foundation
package since then and also published as part of a larger
art book, registered at National Library of Norway,
together with an art exhibition at Handverkeren, Oslo.

Let's again return to the theme of this chapter, how to
get the TRANSLUCENT loop to handle toggling between nets.
  To see even more as to how FUNDNET is defined, and where
the assignment of the value of FUNDNET to THISFCMNET takes
place, you can do two scans. Type SCAN and type in FUNDNET
and then give the starting cardid for the spreadsheet, and
any large enough number like 9999. As it locates FUNDNET,
you type CAR and it will show how it gives value to
FUNDNET. Type MMM and again CAR and it will show a card
which also has something like this in it:
  FUNDNET
  LK
  THISFCMNET
  KL
The 'KL' puts the value in THISFCMNET which 'LK' fetches.
The LK is, as mnemonics, a kind of 'lucky look' into the
value of a variable. The reverse sequence of letter
suggests a kind of 'killing' of the existing value of a
variable followed by the putting in of a new value.

So we wish to set up a new set of nodes, for our robotic
software groundwork, which performs neatly alongside the
spreadsheet nodes. The shifting involves three variables,
at least--in order to switch between nets:
  THISFCMNET
  FCMINDEX
  FCMINDQTY
Come to think of it, in case a function in a net calls on
something like FNAM or FNAMW--where the name of a node can
be converted to its warp, at runtime--this should be
updated as well:
  NEXTFUND
The NEXTFUND gives the quantity of the funds in this net.

Hm, let's make two mini-arrays to store these--what is it
called--quintuplet--that would be five, 'quadruplet' is
the word I want, it means 'four of a kind'.



  GPSNETVARS=
  ^abcdefghij.
  RBOTNETVARS=
  ^abcdefghij.
When you build one net, wants to save the present state
of the quantity of the net and such, in order to get on
with building another net--or just to store it, so you can
start the application which involves net-switching, then
it is good to have an easy-to-use 'save' routine:
  SAVENETVARS=
  |IN:MINIARRAY
  TX
  THISFCMNET
  LK
  1
  JX
  YA
  FCMINDEX
  LK
  2
  JX
  YA
  FCMINDQTY
  LK
  3
  JX
  YA
  NEXTFUND
  LK
  4
  JX
  YA.
So when the GPS is defined, and we're about to define the
robotic net for our new application, we run
  GPSNETVARS
  SAVENETVARS
There is something so neat and sweet about mini-arrays,
the ease and first-handedness shows the poetry of PMN.
  Let's make the complementary structure, LOADNETVARS:
  LOADNETVARS=
  |IN:MINIARRAY
  TX
  JX
  N?
  SE
  EX
This means that it only does a job with a nonbasis input.



  1
  JX
  AY
  THISFCMNET
  KL
  2
  JX
  AY
  FCMINDEX
  KL
  3
  JX
  AY
  FCMINDQTY
  KL
  4
  JX
  AY
  NEXTFUND
  KL.
The name of the first net, as used by GPS here, is simply
FUNDNET.
  Anyway, when the robotic net is defined, and the two
nets are about to perform and sometimes interchange, we
must get in this statement, --saving the RBOTNET and
getting it back to GPS spreadsheet:
  RBOTNETVARS
  SAVENETVARS
  GPSNETVARS
  LOADNETVARS
This sort of stuff as you see is pretty easy to expand to
3, 4, 5 or some meaningful number of nets.
  FUNDNET will get a companion called NETRBT (and in other
software projects we can have more NETRBTs), and, for
simplicity, we assert now that we want one cycle of the
spreadsheet FCM nodes and one cycle of the netrbt nodes
to perform alternately. Let us first consider a switch
after one cycle with each; but we may need quite a few
cycles of NETRBT for one cycle of spreadsheet if we are
'spreading the actions thinly' over many nodes in many
cycles.

  To do this toggling, we put in a node somewhere in the
GPS net to get the switch, and we also put in a node
somewhere in the NETRBT to get the switch. It could in
some cases seem a bit logical to put that switch in after
a cycle has performed, ie, in the highest node. While this
is possible, it is not the obvious choice, because as soon
as you shift the value of FCMINDQTY, that will affect
TRANSLUCENT and since any two node networks are unlikely
to have the exact same quantity of nodes in them, we must
in case pay close attention that TRANSLUCENT doesn't
under-loop or over-loop if we toggle the nets at the
highest level of the net. The more obvious choice is to
use one of the first nodes, and here we might as well say:
the first node of GPS will handle toggling of net over to
the other net, and the first node of NETRBT will handle
toggling of net over to the first net again. It's like two
babies feeding each other :)
  The GPS node, when it has started, must allow the full
set of GPS nodes to perform before it switches. But it can
ready itself for toggling to the other net by setting a
new variable that we create here, called for instance
NEXTNET.



  Just now, I wished to check--is it certain that no such
thing as NEXTNET has been defined already? Here is what I
typed in:
  ^NEXTNET
  EXISTS
And it replied, courteously as G15 PMN often does, "Just
make it!". Try it yourself when you have the opportunity.
  Just remember that G15 PMN is not babysitting every
action you make. If you make two functions called the same
and you don't figure it out at first, you might get a lot
of confusing results. It won't perform both when you type
in the function name, and it won't argue against this
double definition. You must check yourself, when you make
a new function and you suspect it could be defined already
whether it is defined. EXISTS can be used, and you can
also use the SCAN function and scan, as for three-or-more
letter functions, for FUNCTIONNAME= over a vast range of
cards, and, as for two-letter core PMN functions, by a
search on something like " BS:". Be sure to put in a space
first, then you give the two letters--bubble sort BS in
this case--and a colon after. That, as policy, is how the
header of each two-letter function in G15 PMN is defined.

So let's imagine that NEXTNET is not the same as
THISFCMNET, and we're in the beginning of the GPS net.
Then in what could be the first node in GPS, we could have
this sort of activity:
  THISFCMNET
  LK
  NEXTNET
  LK
  EQ
  | when not eq,
  | set thisfcmnet
  | to the other net
  | and so also with
  | fcmindex and such

In the next node, right after this, we could have the GPS
being "courteous" to the other net and affirm:
  NETRBT
  LK
  NEXTNET
  KL

The first node of the NETRBT could have exactly the same
algorithm as we had for GPS. The second node of NETRBT
could be "corteous" to GPS this way:
  FUNDNET
  LK
  NEXTNET
  KL

Before we start up TRANSLUCENT, we should give the value
of FUNDNET to NEXTNET, so that the GPS gets up smoothly.

This we can call CToggle, or "Courteous Toggle" between
nets. The following interactions with the TRANSLUCENT loop
would take place:
  The TRANSLUCENT loop would call the first GPS node.
  It would match over NEXTNET and THISFCMNET to be
identical, and so let TRANSLUCENT proceed to the next node
in the same net.



  In this next node, the GPS will set NEXTNET to be the
robotic node network, NETRBT. And then all the nodes in
GPS will cycle through one time through the inmost loop of
TRANSLUCENT.
  When the outer loop of TRANSLUCENT restarts the inner
loop of TRANSLUCENT, next time the GPS node 1 will find
that NEXTNET and THISFCMNET are no longer equal, and it
will adjust the values of THISFCMNET, FCMINDEX and such.
This will instantly lead the inner loop of TRANSLUCENT to
open up and give good firing-energy to NETRBT, its loop
counter now no longer on the first node, but on the second
node. In the second node, a CToggle--a "courterous" toggle
will take place, in that NEXTNET is set back to GPS. But
this toggle won't take place before the whole cycle of
NETRBT robotic network nodes, have completed, and it is
back to node 1 again.

The more I have looked at the upcoming program example the
more I'm convinced that we should have more cycles for the
NETRBT for each cycle of GPS. So instead of a plain
switching back-and-forth between the two, I suggest a
modification of the above: let it not be node 2 that sets
NEXTNET when the NETRBT nodes are running--let it rather
be a task node that does it when the task has been
completely performed, so that we get a visual update at a
point where the image has changed instead of a repeat of
the same image again and again.
  Quite often we wish nodes, especially the nodes that
have a 'subtask' role (ie, lower priority) to be switch on
and off by other nodes. While technically this could be
done via the #49 'Active?' field in each node, it is a
more gentle, and in some senses, a more longsighted
approach to let an ordinary triplet value somewhere in the
node have this role. That leaves room open later on for
blending several networks by regulating their Active? flag
whole series at a time.

  Time for caffeine and a break for this writer. You know,
one thing about certain types of long texts is that they
can only be written by getting at it daily for hours
with only at most a couple of days break between each
streak. For otherwise the drive and tune of the thinking
may dampen. The car works best when the engine is warm.
And as the car needs oil, the human brain can do with a
bit of fish every now and then. Good too as aphrodisiac.

*SLIGHTLY MORE CONCRETE ABOUT OUR UPCOMING ROBOTIC 
APP*
You will be able to find the completed program in an open
and freely available G15 PMN app list so if in doubt, you
can check against the program code there. It may even be
radically changed, since sometimes the initial thoughts
about a program design sometimes have to be changed deeply
because new, unthought-of factors emerge in the
programming process. This is part of the "dialogue with
the computer" or with yourself through the computer and
its formal computational language, and an impetus to the
creative process.



I think we are ready to begin to set up nodes but first,
let us figure out something worthwhile to do with them
that is educational relative to how many more nodes can be
set up, and which gives us, in software, a good idea about
how certain "goals" set to some task nodes is able to
fulfill themselves through many small "steps" by nodes--
which here turn to a matrix of 160x112 size with either
255 (bright green) or basis (black) to implement these
changes.
  I need to see how feasible it is to set up--it mustn't
be pointlessly complex, nor take an inordinate amount of
net cycles to begin to see results, and the results should
also appeal to direct experience of what goes on--so that
the coherence of the node network is evident.
  My initial idea, before the upcoming programming takes
place is this:
  *Inside the GEM Image editor, we shape a 160x116 image
with the bright and black pixels probably by means of
rather broad and simple rectangles, and save it to C9000.
It should neither be all black nor all bright nor look
identical to any of the fourteen match images. It is very
okay if it looks a bit disorganized. The software "robot"
is going to clear it up.
  *The spreadsheet, part of this example educational
program with a software-only robotic node network that we
now make as app, will of course show the 160x116 image. We
imagine this is, in some vague sense, an 'input' by a
robotic camera.
  *The spreadsheet will, as in the app #1005768, also show
the fourteen match numbers.
  *Let's call this new app #1005769. We create here a set
of nodes. The most elementary actions are here oriented
towards a 'fixing up' of the image within a tight set of
rules: dividing the image into a set of imaginary 'lines'
composed of same-sized rectangles, and not all that many--
we let one elementary action be a swapping of any
rectangle with any other on the same line. Let us imagine
that this is a sort of virtual version of some sort of
'picking up and placing somewhere else' type of action by
robotic motors.
  *At the input side, let us have fourteen nodes, each
storing the fourteen match numbers, keeping in mind that
the maximum value of any such match number is 17,920.
  *At a somewhat higher level (ie, with a higher level
number that the input nodes which fetches the match
numbers from somewhere--and why not from the spreadsheet
since we're interested in seeing what goes on and so
updating the spreadsheet quite often) we can have a node
that tells us which of the fourteen match numbers are the
highest. If, for instance, the input image is nearly a
sine wave like match image #14, you would expect the
fourteenth match number to be maybe 17,000 or so, and all
the other match numbers to be considerably smaller. But
with a more shall we say 'stochastic' image, you might
get average match scores on one or two handfuls of match
numbers.
  *Any sophisticated real-life robotic G15 PMN FCM program
must have top priority 'ethics' nodes but this is in
principle easy to set up given enough sophisticated match
nodes; this is work that belong to the implementation of
physical robotic programs and in a software educational
playground we do not need that ethics type of node.
  *As top-level task node we wish to implement, one
elementary action at a time, such simple moves on the main
image that, if possible, increases the highest match
value the most, given the range of possible 'horisontal'



actions along each 'line' in the image as for the swapping
of rectangles there. If the highest match value can only
be increased by a very small degree, like some hundreds,
the robot shall declare the process as 'completed' and
'done'. Let us be aware that, while a simple program can
meaingfully 'fortify' just one match image, then in the
real world we may have ambiguities that we can best help
bringing forth by elucidating more than one match image
possibility. This could be done by having more than one
net, and they could also carry on 'simulating' actions--ie
without updating the visible image on the spreadsheet--
before they have tried to raise two or more match numbers
to the highest; and after all that, the 'winning' match
number, or even the winning pair of match numbers, or
winning triad, is given to further processing.
  *In order to compare the various effects of the
elementary actions on the image, we need to have a copy of
the image and let the match go on relative to this copy.

In order now for the nodes to do the jobs one could
otherwise compress into loops of loops inside an algorithm
direct, we should have a layout of nodes big enough that
we learn how to let these nodes interact in a suitable
manner while the NETRBT loops again and again between each
'elementary action'. We could have a variable in each of
the elementary actions--in other words, a number position
in one of the triplets--that is a flag: 'is this actual
mode?'--DANCE--or 'is this simulation mode'--BASIS. Each
line could have a main task node and each task can call on
all possible elementary actions for this line, by setting
parameters in the 'motoric' nodes--the nodes with, in
general, the highest level numbers. If you recall from
earlier volumes, we can imagine a sort of mountain view of
nodes where the lowest level numbers are the left side of
the foot of the mountain, the highest level numbers are at
the right side of the foot of the mountain, while in the
middle--near the mountain top--we find that which is
conceptually at the highest level, but which, with a
certain well-defined language, we can call the high
priority nodes including the top priority nodes.

A high priority task node will then set the subordinate
tasks in the Simulation Mode, where changes do not go to
the main image but to the copy of it, and gather the data
from the incoming match numbers on this. We can imagine
that the input or 'sensory' nodes also have a Simulation
mode and an Actual mode, which determines which image they
will match over when it comes to match number
calculations. This is perhaps most elegantly programmed by
ignoring the spreadsheet's own match numbers, since they
are quickly calculated anyhow.

  The higher-level task will, in each cycle, call on yet
another elementary action, one after another on each line,
then all again on one line after another--until all the
lines, or all the lines we bother to include (to simplify
we could decide eg to only take one part of the image),
have contributed with match number increase options. The
highest result alongside which line and just what action
on this line is each time stored by this high-on-the-
mountain task. When enough cycles have performed and the
task sees that all options have been explored, the
'winning' elementary action gets the task of actually
updating the main image--and the NEXTNET is set to GPS to
show it. Let's complete this musing over the coming app by



asserting that the image is written back to C9000. That's
as far as this software-only robot goes in 'realizing' its
actions in the world!

We have now used rather broad terms to describe the
activity and interactions of the nodes. It would seem that
the next step in this process, before we do the
programming, is to be considerably more specific. Just
where do we store what flag, just how is the maximum
match number stored and how does a main task check whether
the completing elementary task has been performed, and in
what cycle--maybe the same or maybe the next--will the
writing of the simulation image to the actual image take
place, and more such. When we have been specific about
this, we will write, in capital letters, some of the key
portions of the code here and I will take up the G15 PMN
programming terminal and type in after what's written in
this book and 'report back' on how it works and we'll keep
on this until app #7005769 is complete and the book
radiates, as it should, a good first-hand FCM node network
understanding in the young and agile minds of my readers.

*INTERMEZZO: PREPARING TO MAKE A SYSTEMATIC LIST OF 
NODES*
In generating mindful expressions in huge quantities, the
body/mind/brain needs more than a bit of food, exercise,
rest and pleasant music. It must have a direct replenish-
ment of the undercurrents of perceptive intelligence,
where the abstract forms are directly experienced in a
kind of state of mind which is both transcendental and, in
an open sense of the word, tantric. And we're not talking
mere minutes; not talking mere 'fascinated watching'; the
most healthy, fresh, young human anatomy must be
experienced from within and with the body active, the mind
getting a sexual mode coupled with the artistic mode so
that the deeper recesses of the perception of pure
esthetic form is renewed: and that perception is the
natural rocket fuel for human intuitive intelligence,
whatever area it expresses itself in.

After dipping into a tantric resirculation of my energies,
I can continue. Let's explore further towards the concrete
implementation of our robotic node network with a
software-only 'virtual robot' doing the job here.
  First of all, in last chapter I went a bit back and
forth as regards just how the robotic network is going to,
as it were, have a railroad switch that switches the
tracks for the railway train from the robotic network and
back to the spreadsheet GPS network. There is a middle-
ground between letting node that is amongst the first do
all of that job, and letting a node that is nearer the
top priority task nodes do it:
  A top priority task node can switch on a flag in a
triplet in one of the first nodes as a 'request' to switch
to GPS. In that way, we retain a clear, first-hand good
overview over just where that switch takes place, while
any node in the robotic network can affirm that the time
has come for that shift.



Another point: we have set aside desiseconds time since
bootup or since startup of program to be put into several
fields, especially associated with tasks. In some robotic
frameworks, the G15 PMN operates in a more text and less
graphical/interactive manner (to save computational time
and energy and heat generation in the steering PC, and
with the fullest focus on getting the robot to do its
task properly), and in these frameworks, how to get a
desiseconds-since-startup count may involve a command that
goes to external electronics rather than in to the CPU of
the PC. So when we make now a software realization of the
robotic network to learn about nodes so as next to work
with them alongside the physical robotic machinery, we
should feel free to skip timing information, at least when
it's not important to get the program made. In that way,
this app we're now making, the app #1005769, can run on
all G15 PMN platforms (or at least without any much
adjustments).

Usually, when we visualize a FCM node network that we're
about to make, we include in that visualisation a sense of
just how fast it might be. It makes for a very different
program if we visualize that each cycle will take, say,
ten seconds or half a minute, rather than, in the typical
case, a split second. But when it does take a split second
and part of the robotic network is to signal something to
the robotic motors, which may take several seconds to
complete the elementary action implied by that electronic
signals, we must also implement a sort of 'patience' in
the network. It must not assume that just because a task
has been initiated in, say, cycle #50 in the loop, that it
will be complete at cycle #51. It may not be finished
before cycle #250. And it may vary from time to time, from
PC to PC, from robotic motor to robotic motor, from
elementary action to elementary action, from one FCM
network to another FCM network.
  So each task, when called on to perform, has, as we've
already clarified earlier, triplet variable fields that
inform other tasks as to whether the task is still going
on or has been completed. These fields we might as well
have also in a 'virtual' robotic network with a sort of
imagined robot, because a task can consists of some or
indeed many subtasks and as a whole, that would probably
take many cycles to complete.

Put in other words--and this is to clarify my mind as a
programmer in this project as well--in this sort of "dual-
purpose" writing that is suitable in an Art of Thinking
exploration--a node doesn't enroll another node in its own
loop when there are other, more 'network-friendly'
solutions. Rather, a node sends a signal to another node
to do such-and-such, and let the network cycles and the
TRANSLUCENT loop call that other node to respond on this
signal; and the node checks--perhaps repeatedly--as to
whether that subtask has been done and then it may send
more signals, to the same or to another subtask.

The "high priority" nodes are those that organize much
activity here--whether as a summing up of input features
or as a ethical necessity node or as an organization task
or 'supertask', calling on subtasks that, sooner or later,
involve elementary tasks. So the 'high priority' nodes is
that group 'on top of the Olympic mountain' of the network
which have an organizing role, generally more than other
nodes. If the FCM network has ethical necessity nodes



setting the constraints for all other nodes to follow,
these have the highest priority of all the high priority
nodes and (from this volume onwards) we say of them that
they have "top priority". Distinguish this from their
level number: think of it as a left-to-right 'position'
starting with such as camera input nodes and going all
the way through the high priority nodes and further and
further to the right where we have the elementary actions.
Got the picture? Level is left-right but priority height.

I think we're ready to assign concrete roles of definite
positions to nodes, and give them definite level numbers,
and begin to sketch the exact code to get this up and
running. The least interesting part as far as educational
FCM robotics programming goes is that little function that
moves a block on a little image left or right so as to
swap a bit with another. That's a very typical little
algorithm and the only reason we are going to have that as
part of this app #1005769 educational app is that we need
something ultra-simple that at least as a modicum of
association with how the action of a robotic hand may
affect camera input. So I will spare the reader for those
more conventional programming topics especially as earlier
volumes have already have a share of such. Here we focus
on robotic FCM essentials, and then you go and fetch the
app #1005769 that has that algorithm. I will however get
it to work while these chapters are getting written so I
can give an impression of how it works. It is always a
little bit of a thrill when the design you've had in mind
for a long while suddenly is an imaginary 'engine' inside
the computer that makes it act as if it has a personality
associated with that design. There is always something
new to that, if the programming project has any complexity
at all. And this certainly does.

Next, I will try and compose the programming notes as
lists--this has, when it comes to a certain stage of
programming, a couple of advantages. One, it takes away
the story-telling component around the ideas and instead
gets the ideas succinctly presented and in perhaps a
somewhat free sequence. Two, the list is compact and so
easy to look at in the further working process as a guide
and map--especially if it can be taken in at one glance.
Three, the list allows attention to go separately to each
idea or pointed listed, and so it is possible to spot
whether a further clarification is needed at some points.

*LISTS TO SUMMARIZE THIS FCM ROBOTICS PROGRAM*
Here, as a programming framework, we summarize what we've
already have decided earlier in this volume and also add
new information which should be mapped before the
app #1005769, a first robotic FCM nodenetwork performing
only in software, is programmed--and this is the actual
sequence for this author, with one exception: I try and go
back to earlier chapter when writing on and correct when
writing the later chapters, when I realize something
should be changed. It's part of the honesty of the process
that I haven't done such correction very intensely; also,



at some stages, I imagined completing the program before
completing the book but felt that the later changes, in
order to get the book to stick totally to the code, would
perhaps make the text less lively and also there's, for
the advanced FCM programmer, an energy of exploration in
knowing that there are two approaches to the same program
idea--this book is one, and the actual open source code
for the program is the other.

The max 100 links are at node positions #50-149, and the
ten triplets, with the middle value reserved for the
number of an algorithm, and the first and third value free
to be assigned, are here: 10,11,12 tp1  13,14,15 tp2
16,17,18 tp3  19,20,21 tp4  :mostly for match things
And mostly for task things: 22,23,24 tp5  25,26,27 tp6
28,29,30 tp7  31,32,33 tp8  34,35,36 tp9  37,38,39 tp10
In addition the Luxury Values are at pos# 40 to 46 and
these can be used for match and/or task aspects; if still
more is needed, see FNAYA etc for arrays involving passive
data nodes which can be created as needed to accompany
a normal active node. The links are at pos# 50-149, with
the quantity of links at pos# 47, while #48 and #49 are
flags: respecively, the high priority flag and activeflag.
As for this brand of FCM networks we are initiating, we
distinguish the triplets the way we just said, and also:
The pos #47 has quantity links, and when any match links
are used, these come first, and task links after these.

Note that eg a high-priority task can, technically, set
activation of lower-priority tasks incl elementary actions
directly without consulting the links; but doing it by
means of the links is, as policy, considered 'cleaner' in
that the links provide a consistent overview over what the
functions inside the node are referring to and thus more
easily can be changed.

*All nodes in this FCM network which aren't of the high
priority types, whether 'match-oriented' or 'task-
oriented', has a soft activation field (in contrast to
the hard activation field #49) and itself will check on
this field being DANCE before doing anything and will
neatly reset it to BASIS when done. This we assert is
position# 21, which is the third value of tp (triplet) 4.
In other words, when adding an algorithm to any of these
nodes, be sure that more or less the first thing it does
is exit when pos# 21 is zero. When pos# 21 is other than
this, some match-nodes will use this value, 1 or 5, to
determine which of the images--the main image, or the
'simulated action' or copy image--to match over.

*Match-oriented nodes: main value is PERMILLE, ie, just
how great, 1000=max, 0=not, does the input match up this
particular criterion/feature. In the case of match numbers
17,920 is max so that will be calculated into 1000 here.
Second value is function to calculate this on condition
that the node has been activated in position# 21. Third
value of tp1 is the probability, again PERMILLE, that this
is right--which is here a redundant field, but we set it
to 1000 just to comply with the general point, for this
will certainly be an interesting field in physical robotic
FCM networks. Interlude question: how do you, in general,
work out w/some certainty just how probable something is?
That's something we often do in daily life, but how?

*Second triplet, first value: this tells, for match-
oriented nodes, more about this particular match--eg its



type (or if it were matching over a sound wave, its main
frequency; or if you had color-specific cameras, its color
type, like Red=10, Green=15, Blue=20). Here, we might as
well have the match image number here, 1..14, and it saves
us from 'hard-coding' the match number into the function
of the match node. In other words, we can have the same
function in all the 14 main match nodes and it fetches the
match image number from this field. This is pos#13.
*Second triplet, third value: allocated (but not used here
in this virtual robot FCM software) to decisecond (ie, the
quantity of tenth of seconds since reboot of G15 PMN or at
least startup of this program). This is pos# 15.
*Third triplet, first value: 1=match over the main input
image, 5=match over simulation input image. In this app,
the main input image is that which shows on the GPS screen
to the interactor with the program. The simulation input
image is a copy in RAM, not yet written to C9000, which is
being 'experimented with' by the task nodes and matched
over again and again so that the most suitable elementary
action (with the highest level numbers) can be picked out.
After each experiment, the original input image is copied
again and again back over the simulation image.
  When the best-performing elementary action has been
identified, the elementary action is done at the actual
input image and it is written to C9000.
*For all nodes, as said, we let the value at pos# 21 be
greater than BASIS in order to signal that its functions
actually shall do something. For the match image nodes,
the value 5 is used to indicate that simulation copy
should be used; DANCE means that the main image is used.

*Task-oriented nodes:
First value of fifth triplet: the next step--the first
being 1--to be performed, or which has recently been
performed. This is position# 22.
Third value of fifth triplet: DANCE when the step has been
completed; set to BASIS by the higher-priority task
calling it when this subtask node is activated. This is
pos# 24. This allows the higher-priority task to call on
matchings over a simulated elementary action and fetch the
results before the next step is called on.
Sixth and seventh triplet: first and third values in these
two triplets are set aside to more timing things, again in
deciseconds--something which advanced physical robotic
contexts have to have ample supply of.
The other triplets are used as seem fit, and both match
and task oriented nodes can use all the luxury values. In
case these are not enough, data-oriented supplementary
nodes can be used, see such as FNAY, FNYAY and those sorts
of functions for how to structure these; most of these are
well-tested by virtue of the GPS which constantly uses
them.

Here are the nodes:
Level number 100:
A node that, when activated, sets NEXTNET to GPS.
We use the 'soft activation' field# 21 as flag.

This is typically set by a high-priority task node that
has determined that enough has been done that it's time
for an update on the GPS screen again. This node also,
neatly, resets its activation field. For more complex FCM
robotic network approaches, there are many nets in a list.



Level number 500:
A node that always checks whether NEXTNET is different
from THISFCMNET, and, when this is the case, adjusts
THISFCMNET. This is always active.

Level number 1000:
14 nodes that checks either the main image, or the
simulation image (ie, the copy of the main image with a
proposed elementary action performed on it), for match
numbers. These can be activated to do their matching job
all at once, ie, in one cycle. Since they are algorithmic,
and since they will only be activated by a higher priority
task node when the image is ready, they can be assumed to
have done their matching job after just one cycle.
The first triplets are updated; described above in this
chapter. Soft activation field is at pos# 21 and in this
case, value 5 indicates use of simulation image.

So pos# 21 also tells which image to match over, one=the
main, 5=the simulation. As a courtesy to the next cycle,
it also wipes the field to basis.

Level number 10,000,000:
The high priority task node in this case, "let's
improvise this by elementary actions in the direction of
one of the fourteen match images". This being in software
and also being amongst the most simple yet full robotic
FCM node networks possible, we do not set a node here to
be marked by its #48 as an 'ethical node, top priority'.
We do however increase the level number much so as to give
room for higher-level match nodes in the FCM networks you
make yourself derived from this.
  In this app, we do it somewhat simplistically and with a
lot of iteration through the TRANSLUCENT loop: every
possible elementary action is tried each time on a fresh
copy of the actual input image over to the simulation
image, and every match image is matched against each such
possible step, and the winning elementary action is called
on to do its job on the actual image and it is stored back
to C9000--only at that point will the GPS show the result
of the cycles. By a click on a button on the GPS, the next
update of the image occurs. And by that, the interactor
can see, directly, first-hand, how the computational node
network does its job of approximating some of the fourteen
ideals by a well-defined if rigid set of elementary
actions.
  When the high priority task at level 10,000,000 has
completed its calling on the best-performing subtask on
the actual image, it calls the node at level 100 to set
GPS as NEXTNET. The node at level 1000 will then ensure
that TRANSLUCENT switches 'computational attention' to
the G15 PMN FCM Spreadsheet.

Level number 1,000,000,000:
The elementary actions. We divide the main image up,
conceptually, in a set of horisontal lines; the height
being 112 so this can be a couple of handful lines. The
same or similar number of pixels are used in the
horisontal direction so an elementary action is then all
about, at a particular 'line', to swap one rectangle or
square of pixels with another at two positions on the
same line. Which swap it is about is organized through
'step numbers'. The step numbers may refer to all possible
swaps on a line, in steps given by this decided set of
pixels, or a subsection of these. We'll see when we
program what seems feasible and elegant enough and which



does work out well exactly how many pixels and how many
steps and how to organize them.
  The use of the triplets is described above in this
chapter; and that includes a field value that determines
whether update is on the actual image or the simulation
image.

That should be it!

*ENTRAINMENT AND SOPHISTICATED GOAL-SORTING*
We're now ready to begin to program. When you have in mind
a design where many components depend on other components,
also of your design, it is usually essential to get it to
written or at least visually sketched form before
beginning the actual construction. In the case of
programming, construction involves paying attention to
syntax and the ins and outs of warps, arrays, matrices and
what not. When you are in the midst of all that, you want
to get this right while just having to gaze on a 'commonly
agreed' sort of construction map for the general direction
of what you're doing. It is a very technical mode of
action, to concretely implement something requiring a very
high degree of precision of a multitude of factors: and
this technicality sort of overtakes much the same aspect
of the intellect that deals with the overarching design:
and so the design should have been completed. In terms of
feeling, getting the design expressed and sensing that it
has a completeness and an adequacy about it, or even
something superb, involves a great relief--practically (or
even biologically) similar to getting out of a severe
headache. So it is with this relief that I will now sketch
the concrete programming steps for this app. I will sketch
it in all essential parts but only as far as it seems
meaningful to do, not filling up with technical
trivalities of a kind that we by now should have handled
well enough by the earlier volumes, and which in any case
are all fully spelled out in the app #1005768 that you can
and should look at while looking at the forthcoming
program sketches.
  Before we begin, let's consider briefly how the above
sketched FCM computational node network for robotics could
be expanded to entrainment, and to more sophisticated
forms of goal sorting:
  *Entrainment. While we do not want a program to in any
way 'change itself', it is of value to create helpful
auxillary programs that, say, in a database (ie, a list of
numbers and/or characters stored on disk in a way that can
be systematically retrieved and/or changed by an
algorithm) stores such as a range of match numbers for
certain objects eg shown to the robotic cameras in various
light intensities and from various angles. Such an
"entrainment program" may even propose certain ranges of
match numbers that is indicative of such-and-such object;
these ranges may be stored and opened up and quicly
inserted into the respective node triplet values of
match-oriented nodes during startup of the robotic
program. The programmer will sit through such an
entrainment session and optionally modify and perhaps
confirm certain data sets; and then proceed to test how
they work with the concrete FCM program; and after such an
entrainment, give the program the 'checked and ready to



produce' stamp. It is his or her own personal stamp; it is
the programmer himself or herself who feels that the
program adequately expresses a mindful, ethical intent
through the software and its associated machinery. Such
entrainment must never be considered a tool for (the
self-contradictory notion of) "machine learning". It is
just a pleasant way of configuring a human-made program
with proper settings, that's all.
  To do entrainment as an extension of the above-sketched
FCM node network would then typically happen by there
being more match-oriented nodes in between the fourteen
which are there now, and the high-priority task node. In
that layer, one would label nodes eg to what sort of
phenomena, human beings, other living beings, things and
processes, that one would expect the camera to get a
glimpse of in a typical run in this sort of context that
the FCM robotic program is supposed to perform in. The
names of these nodes could reflect these objects. To add
more sophistication to these matches, there would be more
levels of nodes between the objects and the match numbers,
allowing links to do such as suggest 'mutually
exclusive' phenomena. For instance, if one object is named
something suggesting 'hot cup of coffee', and one medium-
level feature is named something like 'cold', that feature
would act to negate the likelihood of there being a hot
cup of coffee at the same location, at least if the
feature 'cold' was associated with a high degree of
probability while the object 'hot cup of coffee' was
matched on with less probability.
  Entrainment programs would save time; each match number
combination and probability can be typed in manually in
the general case. In some cases, such as using a computer
to decode some form of language it may make sense to build
up a considerable database of numbers--and the programmer
who is wedded to the first-hand approach will then, in
such cases, ask himself or herself: is this data set
obvious enough, human readable enough, or have we gone
over the rails into a statistical handling of material
that deserves a more first-hand approach? So, for
instance, matching over typewritten letters in books in
order to get a paper version over and into such as a
B9edit text editor readable form is a case where a rather
large database of character-matching data would make sense
and can still be argued to be part of a first-hand
approach. But a matching over a large number of human
movements on a street in order to program a street-washer
robot is a second-hand approach, for it would be taking an
extremely diverse and also extremely ethically sensitive
domain and try and compress the situation into something
that one can let an algorithm 'solve'. This is uncalled
for: if one doesn't have the time or aptitude to manually,
in a first-hand way, program a robot to wash a street
without crashing into people, one should not put a robot
onto the street in the first place. A bit here and there
in that programming can be helped by some sort of
entrainment program, but the overall FCM programming must
be done in a first-hand way when we talk about lively
contexts.
  *Sophisticated goal sorting: The computational FCM node
network for robots that we have here has in it the exact
type of nodes, and levels, and network-switching
capacities, that allows its present form of elementary
goal sorting to be rather effortlessly expanded,
especially when more levels are added to the match nodes.
The present FCM program sorts and locates the most
relevant task or subgoal by means of comparison of the



present state of the input matrix with fourteen match
matrices, that in that sense represent fourteen possible
goals that can be (usually only approximately) reached.
Adding more match nodes at a higher level, between the
present match-oriented nodes and the higher priority
nodes, automatically opens up for new and more
sophisticated goals. On the other hand, grouping subtasks
into gradually larger tasks, and allowing the simulation
to branch into several subtasks performed--with new
matches done on the result in each case--allows for such
as second, third, fourth and even fifth and sixth level
evaluation of task alternatives in a simulated fashion.
This is all a matter of adding nodes, adding algorithms,
adding links, and, above all, sketching how you want the
triplet fields and such to store whatever it is to be
stored to have the sorting material ready.
  In some cases, it may be of value to entertain more than
one 'master path' of action, so that the sorting could
involve protecting data for the winning range of possible
actions. For that, such as the fast two-letter function,
implemented directly in G15 assembly, called BS, could
show which of the possible actions have the best relevant
match numbers. In some cases this could lead to a shifting
of level numbers; and the BS would also be used to sort
that particular FCM node network to get updated execution
sequence.

The sense I have of the program now is that it is becoming
more and more real: the sense of its 'substance' is there;
and while this volume perhaps have become more technical
than I had originally in mind, it is perhaps also reaching
out to those who wish to excel in FCM programming with G15
PMN as never before.

Next chapter is all about coding, using the map of the app
as given in a somewhat list-like form in the previous
chapter.
  The resulting program, when it answers a challenge in an
elegant enough way, and turns out to work really well, and
also has orderly, meaningful, first-hand understandable
cards, is a gem of order; one can rightfully feel pride
and engage in a sense of celebration when a program is, in
that sense, complete. The pathway to making the program
may involve a lot of back-and-forth and checking for this
and that definition here and there and syntactical or
other errors can be in the first version and may appear at
first to be needle-in-the-haystack complicated and yet,
almost always, supersimple once seen. A robotic FCM
program is seriously "high level": PMN stands on top of
G15, the definitions of FCM come about last in the 3rd
Foundation, upon which GPS, the spreadsheet is built; and
this program is on top of that again. It is all in a
sequence so that there never is any doubt where a
definition might be: it is always prior to its first use;
and can be, in G15 PMN, found by the SCAN search in a
blink. Building each card requires both a sense of the
concept of the whole program, the exactitude of the G15
PMN syntax, and a sense of a kind of poetic interplay
between the two columns of code, in black with its
superb coding font, the G15 native Robotfont.
  We need to define the matrix NETRBT. When we have a look
at the definitions of FCM we see that some of the words
used to construct a net involves THISFUND and NEXTFUND--
and these requires reset as they are counters. These
little things--but significant to get right--involve a
bunch of cards in the beginning. I'll give some excerpts



of it, some comments at some points, and when we get on
with the code, I'll write inside the function (or
whatever) what it is it shall do rather than doing it when
I sense it can be too tedious detail to spell it out.

*MAKING ROBOTICS FCM PROGRAM:PREPARING MATRIX*
In a previous chapter, where we first talked of the
'courteous toggle' that the networks should do in their
first (ie, most low-level nodes), we said that this toggle
is going to go in at the first nodes of the GPS. This,
alongside some modifications of the GPS so it better works
with the Batch Graphics version of G15, I will put into
the GPS when the time has come to make the cards--see the
resulting form of the GPS in the App# 1005769 and compare
to its original form in the App# 3555558 to see the
differences--it is just some cards. And the GPS may be, of
course, further modified in other robotic apps in the
future.
  In a sense, the 'first' nodes of a FCM network are
those with level numbers nearest 1, the DANCE.
  How the GPS gets new node inserted 'first': This can be
done by going into the GPS source itself, or we can simply
make the nodes after all the other nodes in GPS have been
made, with really low level numbers--before any of the
other used level numbers in GPS. The one thing we must
remember to do also is to resort the FCMINDEX. I will not
bother this text with that little technicality, because
you'll see it easily enough in App# 1005769 soon after the
start of its code on disk F, and because the content of
these nodes is largely as the content of the first nodes
in the robotic node network we're about to set up.
  NEXTFUND & THISFUND are used when making new node nets,
and need reset. When making the progarm cards I will look
at these notes, and at the moment of typing figure out how
to do the layout over the two columns.
  First, we run the 'SAVENETVARS'--save net variables to
the miniarray to keep these as we described above.
  NEXTFUND
  BASISTHIS
  THISFUND
  BASISTHIS
We're going to make the matrix itself, and the rule of
thumb is to give it extra bytes; something like this--
inspired by the initialisation of the GPS--should work:
  NETRBT=
  ^.
  MAXNETRBT=
  1000.
This constant, MAXNETRBT, says a thousand funds would be
nice but we're only considered a few dozen so this is a
rich world that allows such numbers without a thought.
  MAXNETRBT
  150
  MM
  200
  AD
  SZ



This should mean that the next && quote gets enough for a
matrix. The 150 is as defined in Third Foundation, TF.
  &&
  NETRBT
  KL
That's it! When making new funds or foundries, we use such
as FNEASYACT which sooner or later calls something that
calls MAKEFOUNDRY and which in turn initializes all the
150 number positions of each new triplet properly.
Next, let's configure the matrix for speedy calculations:
  150
  MAXNETRBT
  NETRBT
  WWYYMATRIX
Now FUNDNET is a variable that has the GPS inside it. We
have planned to let that be the case; it is THISFCMNET
that's going to alternate. And THISFCMNET is also used
when constructing the net:
  NETRBT
  LK
  THISFCMNET
  KL
We're going to need a sorted index and the quantity in
that index, and here we follow, doggedly, how the GPS does
it, just with other names than FCMINDEX and FCMINDQTY. We
might compress 'INDEX FCM NET ROBOT' into something like
this:
  INDEXNETR=
  ^.
  QTYNETR=
  ^.
  QTYNETR
  BASISTHIS
The QTYNETR we'll set to the exact quantity once the FCM
nodes have all gotten their level numbers etc and we know
how many there are. We give the INDEXNETR the warps to the
matrix exactly as how FCMINDEX got its stuff:
  MAXNETRBT
  50
  AD
  SZ
  &&
  INDEXNETR
  KL
And:
  MAXNETRBT
  THISFCMNET
  LK
  INDEXNETR
  LK
  INITWARPINDEX
Also we need a helper variable to do the toggling between
the nets. We have before called this 'NEXTNET'. It could
have as initial value the GPS, which is same as FUNDNET is
set to from the start here.
  NEXTNET=
  ^.
  FUNDNET
  LK
  NEXTNET
  KL
That's about it, to launch a second FCM node network when
we already have one good going! Now let's give it flesh.
In the next chapter, we start with SETFUNDLEVEL and
indicate what sort of functions we should equip the nodes
with, as we proceed up to higher and higher levels.



*MAKING ROBOTICS FCM PROGRAM:THE FIRST NODES*
When you look at any FCM node network, including the GPS,
you'll often see that functions for these nodes have the
slightly cryptic articulation IN:TR#,FNWARP as the first
comment line. This is more spelled out in the docs for
the Third Foundation, which of course is App# 3333333. It
means, input to this function--the function being placed
in one of the ten triplets of one or more nodes--is TR#,
ie, triplet number, and FNWARP, ie, warp to this very node
or fund that now is being performed by the TRANSLUCENT
loop. A function may use one or both or none of these
inputs. If neither are used, you likely find two calls to
SH, to 'shuck' these two inputs. But if a function is
going to address a triplet value or links or something in
a node, it is generally the right approach to use the
FNWARP input rather than 'hard-coding' the warp for the
node inside the function--it gets more flexible that way.
Let's do the toggle. A couple of chapter earlier on, we
talked of level number 100. Here is the same stuff,
translated in the direction of honorable G15 PMN language:
  100
  SETFUNDLEVEL
We're going to need a tailormade algorithm for this node,
and these are called FNACTs and registered via a number--I
will have to check with the GPS that the number isn't
already in use in each case (just some dozens are in use),
and the word for registering them is FNACTCHERISH. The 3rd
foundation suggests 5000 is enough and when it is, we
don't have to change the definition of FNACTLIST, the
array that has the number-to-warp conversion used by the
essential TRANSLUCENT loop. Here's a sketch of the
function, where 'soft activation' flag is at #21:
  TOGGLETOGPS=
  |IN:TR#,FNWARP
  TX
  SH
  21
  JX
  WK
  N?
  SE
  EX
And now it is clear the 'soft activation' #21 is DANCE;
which means we are not only going to let it do its job but
also, generously, turn itself off so it only does the job
once each time (if we use this series of program
statements often we can make a function out of them):
  BASIS
  JX
  21
  KW
And now for the real action:
  FUNDNET
  LK
  NEXTNET
  KL.
And let's give it a robotic-sounding FNACT number--I just
checked with the spreadsheet program that it doesn't use
any FNACT number above 3999:



  &TOGGLETOGPS&
  4700
  FNACTCHERISH
That should take care of that. The 'WK' adds the two
numbers, and then does a LK of the value there; when this
isn't a DANCE flag, the SE calls the exit by EX.
Otherwise, FUNDNET--which is the spreadsheet of course--
is set to become the next net to be performed, NEXTNET.
We'll soon set up the next node to do the actual
transition. This is identical in the two nets, so it may
be, when all comes to all, you find that definition in the
finished app a quite an earlier stage in it--nearer the
beginning of the GPS nodes--and so we just use the same
FNACT numbers; and these numbers are typically a common
ground between the set of nets. Let's use one of the
helpful construction words, FNEASYACT, to set up the node
so it's ready to be active; and then set the soft
activiation field #21 to BASIS so it doesn't switch back
to GPS before it has had the number of runs it should
have. Note that if the net is to be restarted after exit
from it, without loading the program afresh, one must look
at each and every init value and be sure they are indeed
have the right values for a restart or else make an init
routine to do this which is eg auto-performed when exiting
the program, before it is restarted. The usual start of
the TRANSLUCENT loop is via the word FCM, but you can also
make a separate word here for starting a particular set of
nets.
  The FNEASYACT ought to get the three values of the first
triplet, the second being a registered FNACT, and also the
name of the node, which doesn't have to correspond to any
function name. Let's have a go at it:
  BASIS
  4700
  BASIS
  &OVERTOGPS&
  FNEASYACT
Note that any field we don't specifically give a value to
after this call, is automatically set to BASIS; and we're
fine with having 'soft activation' field set to BASIS
here--it should be set to DANCE by high priority node each
time.
  And we're on to the next node, that carries out the
switch-job properly--and I'm looking at our earlier
chapter for level numbers and so on while programming--
this FNACT I will put into the updated GPS code for it
is used also there, as we know--and we'll just refer to
its number, 4701, instead of this exact definition here.
By the way, we'll use the 'Soft activation' position 21
throughout--also here where it is not obviously needed--
just for consistency--and here it is set to DANCE:
  500
  SETFUNDLEVEL
  COURTEOUSLY=
  |IN:TR#,FNWARP
  TX
  SH
  21
  JX
  WK
  N?
  SE
  EX



And the essential 'courteous toggle' check:
  THISFCMNET
  LK
  NEXTNET
  LK
  EQ
  SE
  EX
At this point, it will perform this in case they're differ
  NEXTNET
  LK
  THISFCMNET
  KL
  SMARTTOGGLE.
This new function is about the other variables, mentioned
when we first talked about switching between nets--the
FCMINDQTY, FCMINDEX, and NEXTFUND. Let's gather the switch
between the two sets--which in another FCM application
certainly will be more than just two sets--into a function
that does this with a bit of error check and which easily
can be rewritten; we'll look at how to make SMARTTOGGLE
after we have registered this function is a proper FCM net
function, with a very readable number:
  &COURTEOUSLY&
  4701
  FNACTCHERISH
And, --I use much copy and paste now and modify as we go
along--the node, the fund itself, is easily set up:
  BASIS
  4701
  BASIS
  &MAYBETOGGLE&
  FNEASYACT
And we ensure the 'soft activation' flag is DANCE:
  DANCE
  21
  ADJUSTFUND
SMARTTOGGLE should have something like the following
definition, considering the variables we defined earlier
on when we first discussed switching nets, together with
SAVENETVARS. In order to facilitate a little bit extra
controls in case programming goes a bit fast when one
tries new things in the future, and since this net toggle
is used sparingly--ie, it won't slow down to put in an
check in it and it will give more feedback in our future
programming in case there's NEXTFUND has had a funny
value--we put in some 'quality control' in this function:



  SMARTTOGGLE=
  |ACTION:WHEN
  |THISFCMNET
  |IS UPDATED,
  |UPDATE THE
  |OTHER THREE
  |NETVARS
  THISFCMNET
  LK
  SX
  BASIS
  T8
  GPSNETVARS
  1
  AY
  S3
  RBOTNETVARS
  1
  AY
  S5
Okay, that was a lot of 'preps': putting stuff into simple
local variables in order to have snappier expressions in
the following parts of the function: we have THISFMNET
avaiable in IX, will set J8 to the right miniarray; have
i3 with one miniarray and i5 with the other. If not, let's
have it print one of the world's shortest error messages,
&??&. I have long avoided what I will now do: to count
just how many positions in a functions such a two-letter
size quote occupy; I remember I decided, making PMN, that
at least some quote-types should have more rather than
less around them so a program might work even with a poke
into a quote by such as YA, KL or KW that is a bit out of
bounds. So how long could it be? Let me see: we have got
to have what we can call a QUOTEWARP. We want the length
--we want the quote itself, two ?'s, and we want a NILCHAR
--adding that up we have 1+1+2+1=5. It is at least that.
By a clever combination of FF and AY on a few example
functions I type in and 'hack' into at the terminal, I
will decode my own code (not for the first time):
  The answer is 6. For speed of performance, the PMN code
has a quantity inserted before even the length number that
tells PMN how many positions to jump over to get across to
next instruction, and that itself occupies one more, so 6.
That means that if you wish to do &??& followed by PP on a
condition, you could use D7 or D8 with a TN, the TN being
a useful, pleasant fast way of putting in an extra code
that does nothing except making a column more readable,
which, in terms of human meaning, is of course doing
something. That means, to put a two-size quote inside a
D-like 'deliberate a jump' call like D7, you could, for
ease of reading, make a |QUOTE comment where you also
tell the length, plus four, of the upcoming direct quote
in a function. You might do it like this: |QUOTE:6 POS
  This concerns any &..& quote, or any ^.. quote, that
appears inside a segment jumped over by something like D8.
These quotes we can call 'direct' quotes, unlike the
quotes whose warps are stored in some variable, and which
are treated straightforward in this context.
  SO ADD 4 TO THE QUOTE'S LENGTH--eg, for a quote like
^XYZ of length 3, we have 3+4, so eg: |QUOTE:7 POS
And that's how to use any of the two-letter functions that
start with 'D' and that 'decides' to jump over a certain
quantity of positions, up to 16 in the TF, together with
one or more quotes. Another way is to put the warp of the
quote into a local variable and just use it. When you have
the warp to a quote, short or long, eg set to TX/JX, all



you need is to put JX on a line and there is no need of
any calculation around it.
  The connection to how the machinery of the programming
language works in the background, and the assertion of the
mind-stimulating value of doing arithmetic with whole,
natural, simple numbers while programming, all enhances
the first-handedness of your work when you do G15 PMN.
  Let's get on with the function before I chat too much;
remember that calls like D7 or D8 'decides' to jump given
a DANCE input. J8, through T8, must become one of the two
nets in this two-net switching situation:
  J8
  i3
  EQ
  N?
  D2
  GPSNETVARS
  T8
That takes care of one alternative. We go slow because
this routine does a bit of 'quality check', as said.
  J8
  i5
  EQ
  N?
  D2
  RBOTNETVARS
  T8
And now for my first-time ever use of a quote together
with something like D7 or D8; it has size 2 and so we
add 4 and write 6 POS as shorthand for 'this quote, while
it is written on one line, takes the equivalent of six
positions or lines':
  J8
  YE
  D8
  |QUOTE:6 POS
  &??&
  PP
  KK
This should do. It means that the program won't go on
without eg an ENTER-click if this doesn't get right. This
means that the programmer will likely get this message as
soon as there is a mix-up and long long before app is put
to production; it may mean the guy has to turn off the PC
& back on but then the constant advice is: do a reboot of
G15 PMN so that all disk-writing is complete, before
starting a new program that might lead to a PC stop. In
that way, disk integrity is protected.
  The rest is, by comparison, excruciatingly easy:
  J8
  LOADNETVARS.
The LOADNETVARS only does something given a meaningful
input.

According to the list of level numbers in an earlier
chapter, we're on to level 1000, ie, the veritable match
numbers themselves, as the next coding bit. We're getting
on!



*MAKING ROBOTICS FCM PROGRAM:SIMULATION MATRIX PREP*
In the next chapter, we create the fourteen match nodes.
Here, we blaze an orderly trail for just that!

The App# 1005768, made just prior to our work now on
#1005769, has a function which is useful when the GPS is
to show all the fourteen match numbers relative to an
image which is already loaded. Function PATMATCOMP loads
specified match image and compares. This comparison is
done between MATCH1IMG, which we can call the 'main image'
--of which we're about to make a copy so that we can
'simulate' various 'robotic actions'; and MATCH2IMG, which
is loaded from disk. To save disk time, a future and
rather obvious optimalisation of any repeated matching
over the 14 match images is to store them in minimalized
form, ie, as 112x160 matrices, rather than load them from
disk through their conventional GEM image form. The key to
the matching itself is the two-letter word RO, which was
added to the Third Foundation set of standard two-letter
functions in the course of writing the earlier volumes. It
can be thought of as a mnemonic for, namely, RObotic
matching over matrices, and it is superbly fast, written
in G15 assembly, and just what we need for exact
comparison count.
  To get on with our stuff, we use PATMATCOMP here, but we
are aware that this can be made faster in case a later
production use of this node network indicates that the
disks are buzzing needlessly much when accessing match
images. (Whether or not that 'buzzing' is meant literally
depends on the style of disks--some are, of course, not
magnetic but rather like RAM only handling power-off/on.)
Here's how to make it faster: make fourteen matrices, each
of the WWYYMATRIX type, each similar to MATCH2IMG in size,
and line them all up in an array--an 'array of matrices'
is an elegant concept, and--since we all here in the G15
PMN 'league of nations' know ultra-well the warp concept,
we know that this is a matter of putting the warps of the
matrices into the array. Then 'clone' the PATMATCOMP into
eg PATMATCOMPF, with 'F' added for faster, and input the
position in the array instead of the position on the disk.

The one tension I have when writing this--and commenting
on the process of thinking is presumably part of the art
of exploring the process of thinking--is that I wish to
do one card after another, and test that it compiles well
step by step, and experience the sense of full order--
whereas with each chapter now, prior to the programming,
we're building up 'tasks' for me to implement in terms of
programming and with only partial description of how to
implement them. Nevertheless, knowing that the sense of
order--that feeling of prevailing overview, oversight and
harmony that comes with a really well-working program,
well-written and performing smoothly like an infinitely
enduring machine--all that will come, soon, makes the
writing peaceful enough.
  At any rate, let's make MATCHCOPY, a new matrix with
identical structure as MATCH1IMG, and a storing-place for
the original MATCH1IMG, MATCH1ORIG, so that it is easy to
return to after the FCM node network has done its
"simulation work" on the copy of the main image, which in
our 'virtual robot world' represents the status of affairs
faintly as could be inputted via a robotic camera.



  MATCH1ORIG=
  ^.
  MATCH1IMG
  LK
  MATCH1ORIG
  KL
That takes care of that. We can now switch MATCH1IMG to
whatever we want, such as the MATCHCOPY we'll make next,
and switch it back when we're done.
  MATCHCOPY=
  ^.
  160
  115
  MM
  SZ
This is, as you see, 3x160 larger, in terms of positions,
than 160x112, and so plenty to allow WWYYMATRIX to do its
normal structuring. Onwards, the SZ has now configured how
much of RAM the && next will allocate neatly:
  &&
  MATCHCOPY
  KL
  160
  112
  MATCHCOPY
  WWYYMATRIX
Done! Hm, we're ready to code the nodes now I think: these
should have two values in one or another of the first
triplets not already assigned for something: the first
value can be a flag that says whether to use the main
image, DANCE, or the copy image, BASIS. The other value we
should store is the number 1..14 that says which match
image it should compare with. In one of the first triplet
values we'll output the result, recalculated from the
match value result, which goes from 0..17,920, and over to
our beloved PERMILLE, ie, from 0..1000.
  Why PERMILLE? And why has G15PMN nothing of the percent-
symbol that is typically in classical Ascii? Answer: to
line up everything on a scale 0..100 is a bit stupifying,
in my arrogant opinion, because, as a start, we need at
least an additional digit in resolution for more refined
thinking. And I mean to see that much of humanity has got
stuck in statistical thinking around percentages for no
other reason than a meaningless, never-planned convention
that better be altered--quick--so we get more wisdom in
thinking, planning--and in statistics. That's why PERMILLE
--besides, I wanted to get rid of any symbol that appears
to 'divide on zero' because it reminds of the unsmart way
infinities have been handled in the past. So the new
symbol in the Ascii 7-bit character set looks far more
like a growing tree-branch or even flower and is used
profoundly in the CAR-menu system of G15 PMN.
  An abbreviation for permille, suitable for writing, is
'pmille', which can be pronunced 'permille'.

Now the fourteen matching nodes themselves. Sequence of
performance in between them does not matter, as long as
they are all done before we get on to the next level. It's
perhaps worth nothing that a sort routine, such as in
particular our favourite BS, can reorganize sequence
between items that have identical sort-key quite freely.
So with 14 nodes all having the same level number, after
BS has performed--and it or something similar must be
performed each time the level numbers aren't sorted in
FCMINDEX--their sequence may be anything at all--and not
necessarily the order which we typed them in.



*MAKING ROBOTICS FCM PROGRAM:MUSING OVER MATCHES*
As the saying goes, there are always many ways of doing
anything in programming. We have a 'main image' and a
'copy image' and the first time the 'copy image' is being
matched over, a loop should copy the main image over to
the copy image, number by number. Where should we place
this copy-loop? Let's think.
  There are two places that appear fairly obvious, one is
at the match nodes themselves. They get a flag (in a
triplet, we must decide which) and when it is something
matching goes over the main image, and when it is some
other thing it goes over the copy image.
  So one way could be, let's check whether the present
image, MATCH1IMG, is set to the copy image when the flag
suggests so. In case it is not, the match node function--
which presumably can be the same for all fourteen match
nodes--can take that as a hint that a copying from main
image, safely stored at MATCH1ORIG, to the MATCHCOPY
should next happen--and the MATCH1IMG is set to MATCHCOPY.
I feel like this may be right when I write it but it also
seems right to have given a thought to doing copy-loop
somewhere else, namely at the higher priority task. It is
the one which is going to locate the best pathway of
action; it will start making arrangements for generating
match numbers of various 'simulated actions'.
  Each time a subtask has performed its job on the
MATCHCOPY image, the task nodes are going to present the
results of this. So, it would seem like the copy of the
main image should be made before each subtask--in this
case, before each "elementary action"--and it seems very
clear that this copying cannot wait until match-time.
  Often, when something feels right yet other approaches
seems more right, I find that that which feels right
may also seem right but only after that which seems more
right is understood so well that the aspects best taken
care of in that which seems right are also handled well
through doing that which feels right, --or, as an
alternative, that looking at all these aspects together,
the feeling will shift and that which seems more right
will also feel right.
  Let that be Proposition# 1 of 1 in this volume about
the Art of Thinking as such :)

Looking at where the copy loop should be placed, whether
at the match node level or nearer the task levels, the
feeling has now shifted, albeit slightly, in favour of the
task level or levels. My sense of it is that we pursue
this path but are ready to change if something appears,
during the programming, to indicate that it's better to do
it, somehow, at the match level after all.

By this assumption, the match nodes are implemented with
the sense that the matrices are already all right--as far
as their contents go. But the check as to whether
MATCH1IMG is set to the original main image or to the
copy should be done, and the setting adjusted if need be
to perform right relative to the flag as to whether it is
the main image or the simulation copy the match is going
to work on.



  And it is indeed meaningful for the match nodes also to
work, sometimes, on the main image--not just the
simulation copy; and that is, of course, because the task
node is concerned with _raising_ the match values by a
suitable smart subtask and so it has to have the original
value, not just the simulation copy value. Technically,
some minute computational time could be saved by fetching
the main image match values from the spreadsheet instead
of calculating them afresh, but it is snappier to program
a fresh calculation, and the computational time is mainly
in the many cycles where the possible actions are tested.
So, when coding is more elegant, perhaps much more
elegant, and the computational time involved is just
slightly higher in the overall context, usually the
elegant way should be chosen. Programming is about
beautiful action.

About beautiful action--good programming--let it be clear
that a good programmer has a lot to think about,
simultaneously. The formal language should be, if
possible, ruthlessly clear about what is being expressed
but also fairly effortlessly to read in sequence. Like a
good novel, a well-written algorithm in a good programming
language can be read, and read in sequence. Now however
the more there is of such things as 'conditional
performance' of segments inside an algorithm--and this is
accentuated when there are nested conditions (segments
within segments with a conditional performance)--the more
there are of 'jump-points' inside the algorithm. And these
jump-points cannot that easily be 'read' in sequence; they
have to be visualized, while reading typically must go up
and down and re-reading of earlier parts must take place,
something which is not eradicated by a hierarchical
ordering of indents in code (something typical in earlier
programming languages, before G15 PMN0.
  For such reasons, G15 PMN is all about small algorithms
in which there is relatively little of such jump-points;
and where they are, they are meant to be laid out neatly
in the two columns of cards by such tools as D2, D3 and
so on; or the single-line form (that doesn't jump over a
line when DANCE, but only at BASIS, unlike D2, D3..). And
instead of the non-beautiful 'grouping of statements' in
languages such as C, which uses { and }, or Pascal, which
uses BEGIN and END, a small positive natural number is
used instead--because such numbers are very much first-
hand in every sense.
  A detail note on programming style using D2, D3 and so
forth is that, after TF {Third Foundation} was made, it
repeatedly made sense to be aware of exactly how many 32-
bit number positions are used when PMN code is compiled by
the underlaying G15 assembly. And for two-letter words,
or three-or-more letter function words inside a G15 PMN
function--in all cases where these are neither loop jump-
points like LO nor conditional performance jump-points
like D2--the quantity of number positions is one--a single
warp. But when a number is inserted, the quantity of
positions are two: one for the warp that handles numbers,
and one for the number itself. For quotes, it is four plus
the quotelength itself; see our discussion of this near
definition of LOADNETVARS.
  The consistency of how numbers are treated allows the
quantity of positions--which D2, D3 and so on are about--
to be calculated. For quotes, see what we wrote about the
|QUOTE: comment above, we add 4 positions to its length.
For the far more native structure of a 32-bit number,
all we need is one more position--the 'numberwarp'--and



this warps goes to a G15 function that puts the following
number to the stack, and updates the present address of
what is being performed by one extra position (ie, as a
'jump' over the number that is going to stack):
  |NUMBERWARP:
  314000000
So, if inside a function you use D2 to 'deliberate a jump
given such-and-such condition' over two positions, and
after this follows the number 314 million, you could write
a comment line |NUMBERWARP to remind yourself that not
only is 314 million occupying a single number position in
the function, but there is also a warp to handle this
number, ie, get it to the main stack, just preceeding it;
and D2 should count this as equal in size to two normal
function words as far as positions go.
  So, in the opinion of me as creator of G15 and G15 PMN,
the constant work on counting is refreshing, delicious and
healthy, and indeed reinvigorating in a meditative sense,
as well as a boost to intelligence, for a programmer. But
while counting using integers is a virtue, the
visusalations of hierarchies of such as nested conditions
should not be enforced upon the programmer who after all
have so much to think about in order to get any adequately
complex program up and running. Hierarchies are not wrong
but they are not novels. A program is, in a way, a novel
in a secret language.

*MAKING ROBOTICS FCM PROGRAM:MATCH NODES & INFINITY*
I looked up the level description several chapters earlier
and saw that, entirely in contrast to how we describe it
in the previous chapter, it speaks of the soft activation
field, #21, also to be used for specifying whether the
image to be matched over is the main image, 1 meaning main
and 5 meaning copy image. It's part of thinking to allow
plans to fruitfully fluctuate a bit. I can see that this
has the merit of saving up more triplet fields for future
uses of similar match/task nodes, so let's go for this,
after all. These are all at level 1000. Let's see what we
can do here, which fits with the level description several
chapters earlier, and also with the variables we have set
up including MATCHCOPY and MATCH1ORIG and such:
  1000
  SETFUNDLEVEL
To pick a number above 4700--we've used 4700 and 4701 as
robotic FNACT numbers in the previous levels--we can
chose 4710 for next FNACT. This will interact a bit with
the node triplet values. In an earlier chapter, same as
where we dicussed levels, we discussed triplet uses for
match-oriented nodes. What's relevant here is that main
value at pos #10 has PERMILLE, 0..1000, and in this case
a 1000 reflects a 17,920 complete match. The extra value,
at pos #12 is here set to 1000 for 'full probability', but
not read in by the function. At pos #13 we have the type#,
which here is 1..14. This is ready by the function. And we
have of course 'soft activation' field #21 which is 1, for
main, 5, for copy image, and BASIS when the node should
wait before performance. Let's set up these values in an
initial state before making the function, for the first
match node, where type# is 1.



  BASIS
  4710
  1000
  &MATCHIMG1&
  FNEASYACT
  |IMAGENUM:
  1
  13
  ADJUSTFUND
  |SOFTACTIVE:
  |0, 1 or 5
  |FIELD# 21
Since newly made nodes have fields not adjusted already to
BASIS, that applies for field# or pos# 21 as well. Let's
make a function:
  MTIMGNODE=
  |IN:TR#,FNWARP
  SX
  SH
  21
  IX
  WK
  T1
  J1
  N?
  SE
  EX
At this point, supposing the value wasn't BASIS, the J1
has either 1 or 5 in it. This will determine whether
MATCH1IMG should be set to MATCH1ORIG or MATCHCOPY. Let's
define in a function--before this function, when it comes
to cards, but after here in this text, since we're
sketching now, called SETMTIMG, Set Match Image. It can
have the value 1 or 5 as input:
  J1
  SETMTIMG
So far, so good. Let's get the type#, ie, the match image
number and at once convert it into the location of the
match image, as expected by PATMATCOMP. The disk# is 6:
  6
  IX
  13
  WK
  DC
  220
  10000
  AD
  PATMATCOMP
  S4
Now i4 (cfr the node in the beginning where we say that we
try to consistently use lowercase 'i' in the much-used
variable name to avoid the confusion of digit 1)--it has
the match number result. 17,920 means 1000 pmille. To
figure out how to do this conversion with just whole
numbers, I'll play for some minutes direct at the G15 PMN
Third Foundation terminal, interactively with some
calculations. Alright, we multiply by 1000 and then divide
by 17,920, using rounded division RD. I checked this with
half the value of 17,920, namely 8,960, and it gave
precisely 500 as answer; and checked also with BASIS, and
that gave BASIS as answer. So here we go:
  i4
  1000
  MM
  17920
  RD



And this is going to be put into the main value.
  10
  IX
  KW
In addition, we wish nodes that do a task at soft
activation to turn themselves courteously off when it's
done, and why not make a little helpful extra function
here:
  21
  IX
  RESETNODEFLAG.
That little dot is, as you know well, a huge dot--more a
square, really--when seen in the native ROBOTFNT of G15.
Here, it marks the completion of the definition of the
main function for the match image nodes, MTIMGNODE. Let's
register it and make it ready to use for the nodes:
  &MTIMGNODE&
  4710
  FNACTCHERISH
The utility function we should put in some earlier card:
  RESETNODEFLAG=
  |IN:POS,FNWARP
  AD
  0
  W
  KL.
Now let's sketch that SETMTIMG which we referred to in
name in this function, and so will be placed just before
it in the cards:
  SETMTIMG=
  |IN: A
  |ACTION: SETS
  |MATCH IMAGE
  |TO 1 MAIN OR
  |5 THE COPY
  1
  EQ
  D5
  MATCHCOPY
  LK
  MATCH1IMG
  KL
  EX
When it's the original, ie, the main image and value is 1:
  MATCH1ORIG
  LK
  MATCH1IMG
  KL.
We're going to set up 14 nodes at this level, and they're
identical enough that this could be done within a loop.
But here we'll just write out the first ones, and we'll
type them into cards either as a loop or by copy-paste of
the cards with small modifications:
  BASIS
  4710
  1000
  &MATCHIMG2&
  FNEASYACT
  2
  13
  ADJUSTFUND



And the next:
  BASIS
  4710
  1000
  &MATCHIMG3&
  FNEASYACT
  3
  13
  ADJUSTFUND
And so on up to 14. That's the match nodes, all implented.

Let's use the opportunity, since this is within the larger
context of exploring thinking as such, not just the very
particular yet educational and instructive form of
thinking called 'programming', to see how easy it is in
natural language to go from a sentence having a numerical
boundary--"..and so on up to 14" to a sentence that
involves our human, in-born, God-given capacity for deeper
intuitive visions and visualizations: "..and so on", or,
more pointedly, "..and so on ad infinitum". When we chose
the latter path in language, to call in the infinity
concept, we are no longer doing 32-bit programming, of
course. But supposing we took something involving numbers
and dwelled and pondered on this question: well, then
suppose we let something involving counting _really_ go to
infinity, what then with the finite numbers? We may see
the infinite, like the human brain (at the subtler level)
as an orchestra, jam-session like--Bob Marley reggae
rather than a symphonic orchestra perhaps--but what, in
this larger vision, when we think about it, is the essence
or substance of numbers like 1, 2 and 3?
  A recurrent vision I have when I ask this sort of
question is that they represent a form of 'dancing
interaction' between what we vaguely can call 'infinities'
--in other words, that 1, 2, and 3 talk about how moving,
mindful, living structures (of an 'immaterial' yet real
kind) are relating to one another; or, if you prefer, how
they are 'rubbing against each other'. The sexual
connotation is intended--no, not as a joke. This is to
some hilarious, to others--who have any notion whatsoever
of the world's mythologies connected to structures of
reality at a deeper level--entirely elementary, trivial--
the phrase 'no-brainer' comes to mind. It is a no-brainer
that the nature of infinity is sexual--if you have any
sense for instance of a not insignificant portion of the
pluralistic creation myths in hinduism, and that's only
one of several examples.
  What does this mean when on the human level of living?
As we have touched on in the previous volumes, but which
perhaps can be said with somewhat other words here, is
this: the highly interesting form of brain/mind/feeling/
intuition/empathy/intelligence activation that takes place
when both the mind and the body in the sexual sense,
through pulsating action connected to such as the nerves
in--let's be specific--the clit/dick, and other erotically
sensitive areas (which in some states of consciousness is
all over the place)--is a reconnecting with both of what
we most deeply are, as infinite beings, and with what
reality is.
  It is in this state of what we can call 'enlightened
sexual practice', which may mean sex as self-love or
masturbation and/or sex as love of other bodies in a
sensual/sexual way, and with the mind engaged in
perceiving, with fascination, a smorgasbord of intensely
healthy, elevated human anatomy forms, that we renew our
brains and bodies, and it is in connection with this state



that a human may also 'reach out to cosmos', and to its
source, God and his angels or muses, with prayer. This
prayer cannot be a command, of course. What has been
created is not entitled to command that which is creating.
At most, it can be a request; but the complementary
feature, as important as prayer if not more important in
many senses, is intuition in the sense of sensing what is
right beyond one's own ego and the coherence of brain to
stick, diligently and robustly, to the crystallized result
of such genuine intuition regardless of pains and
inconveniences in daily action.
  Since we're approaching--both in sheer number of pages,
and relative to the aim, viz., to finish the app# 1005769
with robotic FCM node network in a well-explained way--the
completion of this volume, and since a number of tasks are
ahead before the completing volume in this series,
including steel-and-plastic-shaping work for getting not
just one but twin robots going and with plenty of apps for
getting them to do useful things for us; and also, to get
an EEG apparatus going for real in which some of the
propositions I have about the activation of brain during
certain types of sexual activity can begin to be more
deeply researched, I will use the completion of this
chapter to go into two points which, at the moment of
writing, is of huge concern to young people in USA and
elsewhere, that of abortion and that of whether there is
any point trying to save the planet which appears to be
going into a spiral of extreme weathers, torrents of rain,
floods, and extreme heat, ice pole melting, pollution,
deforestation and what not, and wars on top of that.
  For those hugely interested in the history of ideas of
the 19th and 20th century, they will know that Bertrand
Russell--who, in various and enduring ways, took to
believe not in the 'science' or 'metaphysics' of Karl
Marx but in various toned-down political ways inspired by
marxism such as socialism--was also a core influence in
the evolution of so-called "atheist thought" in the 20th
century.
  In a series of essays and books, and with his often
fearless and slightly witty logic, and with a razor-sharp
sense of the English language, he 'dissected' all major
philosophies he came across. However, works by Kurt Goedel
disseminated the standing Russell had in pure logic,
and the fumbling Russell showed in trying to relate to
and have a discourse with the younger charismatic thinker
Ludwig Wittgenstein left one with a feeling that Russell
had got his essential tenets somehow wrong. Wittgenstein,
in my interpretation, tried to outdo Goedel's second
Incompleteness Theorem (which hinted on my understanding
of infinity as beyond reach of human formalism) by going
'around' Kurt Goedel. But for all his efforts, he didn't
seem to erect anything such as a new grand vision of the
universe, which, prior to the 20th century, and, in my
opinion, still and more than ever, is the duty of the
philosopher (more than the physicist, though some were
both, such as David Bohm).
  Those who carefully read the biographical notes of
Bertrand Russell will be able to trace this passage, which
he wrote when he commented on a short book or pamphlet he
had written on the sense of infinity: that he would not
have written it had it not been for the influence of a
certain lady. In other words, the atheist Russell had a
phase in his life involving what he termed "mysticism",
and he ascribed his fascination for this non-atheist
topic, in which he breaks with typical statements on the
finite and the infinite, to a phase where he had what I



can imagine to be fantastic sex with a beautiful young
woman whose mind was very meditative and compelling.
  My interpretation of all this is that most of his life,
Bertrand Russell wasn't sexually activated in a full sense
and that was part of his typical flat denial of the
significance of the infinite.
  Turning now to Russell's flirting marxism, we note that
that Marx talked of what he took to be the future, in
political terms, and that Marx spoke of two phases: a
first phase in which "people take things back" from the
superrich and their wolves, in which there is hierarchy,
and a second phase in which there is a deeper communion
and less hierarchy--thereby "communism". If we for the
moment let all the thousands of rediculous assumptions
that Marx added to this be dissolved, and remember also
how drastically ugly the leaderships eg in Russia and
China have been insofar as they have tried to implement
any form of "communism", then these two phases--don't they
make some abstract sense? As I thought Russell had written
but, in now checking it: it turns out it was Niels Bohr,
the danish physicist, who said this (possibly in German,
but he also wrote and lectured in English if I'm not
mistaken): the opposite of a fact is falsehood, but the
opposite of one profound truth may well be another
profound truth. That, or the corresponding thing in
German or Danish, is a quote attributed to Niels Bohr.
This ties in with the concept of Complementarity which
Bohr was much focussed on--indeed probably well too much--
but, once we dissolve the false assumptions Bohr had as
to the impossibilities of going beyond the present
quantum theory in terms of visualisation the background
reality, the concept of Complementarity once more appears
appealing (and my father constantly emphasized this point
in our discussions, and I'm grateful for that.) So in a
future book I can imagine giving this concept some more
time together with my own concept of quantum fields. Q.f.
again ties in with my Super Model theory. S.M.Theory is a
set of ideas with a hint of a computational aspect but
a fundamentally organic way of bridging quantum theory
with general relativity theory and extending it towards
biology, involving a universe that can be visualized as
part of an organic multiverse with a creator and his
angels or muses. This has not got the mathematical
inconsistencies of present physics for it is written with
an eye to illustrating formalisms done in G15 PMN as an
alternative to mathematics, and as illustration of theory,
not as core of theory--meaning, the theory isn't showing
the universe as a machine.

  Anyway, politically, a hope of some sort of 'historical
necessity'--including but not limited to the hope that
rigid dogmatic execution of limited interpretations of
ancient scripts by religious hierarchies will go away--
a hope that history will 'sort out' and a good future for
all will come has been a driving-force for minds of the
20th century. And so there could be elements of a profound
truth in something of that perspective if we filter away
all its nonsense--of which there is plenty--and at the
same time consider that the opposite of that perspective
may be "another profound truth".
  And so the little scripts used by fat, rich churches,
mosques, temples all across the world to justify the
persecution of those who practice love relative to those
whom they love have made people, and rightly so, furious
about the seemingly pointless limitation of human
enterprise; and at the same time humanity, with billions



deflating the resources of a single planet and in all
overt technology far, far away from a planetary nomadism
(which I for years, and in writing, has regarded as the
only pathway ahead for humanity), have a desperation at
not seeing, with ease, light ahead. Unless they are very
'faithful' to their little books, in which case they
usually interpret their books in the direction that men
are best and it's up to God which children shall grow up
and so abortion rights for women who don't have the
economy to raise children should be removed. This is a
giant, hefty conflict of opinion that is leading to hints
of chaos at elections.
  So let's imagine here, two profound truths: yes, phases;
that's truth# 1. Yes, something holy is real and there's a
future and there's something to letting this take over.
That's truth# 2. When we combine them, we can see
something like this as a perspective: right now, humanity
is in a state where lack of invasive medicine of many
sorts would rip societies apart in desperation for there
are few joys and much toil and little resources for each.
In this phase, let's "take things back" from the old
corrupt religious leaders who so hate women's freedoms;
let's vote in favour of full rights for all invasive
medicine if that can lift up the lives of young women so
they are not burdened with carrying children before they
have built strength enough, also financially, to help the
kids grow up--in other words, it must be wanted; and a
woman's desires are more holy that the texts read by
bearded old zealots in that regard. Most of those old
texts were written in languages that could not even
describe a girl, a woman, except as a peculiar add-on to
The Men. I'm not saying there isn't a God; I'm saying that
doubt in the old texts is the only way forward to Faith.
In short, the old so-called holy texts are, in large
parts, written by women-haters--and the Christian (and
Jewish) traditions are not excempt from this. The same is
so for Arabic in Islam except that in their description,
heaven is abundant in beautiful young women and so there
is a glimpse of true adoration for the woman, shown also
in the female genitalia lookalike architectures for their
mosques.
  So a God-believer should believe that this phase is
different from the future-phase: this is how to combine
the 'destilled' profound truth of one perspective, the
socialist one, with the 'destilled' profound truth of
another perspective, the religious one. The color of this
attitude is perhaps, somewhat coincidentally in modern
politically terms, more 'violet' than red or blue; and one
could argue that a complement to some shades of this color
is bright spring green--which again is complementary, in a
sense, to pink.
  The natural Personal Computer monitor color of choice is
in alignment with the research done also by IBM prior to
their launching of the IBM Personal Computer in 1981. This
thing about colors go in phases, and this is, I believe,
the first year--this year in which this is written--since
then that a similar (somewhwat dampened) green have been
something that the younger generation is rooting for, with
slogans like 'brat green'. I expect the present focus on
this color will be brief but in future trends, it'll come
back and, I predict, get gradually more established. It
will be realized how immensely fruitful it is to work with
PC green; how energized and coherent the brain gets when
it's had hours in which green monitors are used to view
also photographs of the most beautiful young women on the
planet. The afterglow of such a bath in such green is one



in which the brain is more alive with colors than when
color monitors are used--in my opinion. That depends, of
course, on the person also having a life and not just sits
in front of the desk all day long. Green monitors involve,
in other words, a way to make also 'real-line' seem more
important--for it caps 'on-line' experiences before they
dullen the senses by overburdening them.
  Similarly, I do not find any further developments of the
computer equipment along the lines called 'metaverse' or
'augmented reality' or 'virtual reality' anything but
commercial gimmicks with an appeal mostly to those who
haven't got a life and/or have given up mostly everything.
  Also, it is clear that the future does not belong to
those who seek to try to put quantum features under human
control to a larger extent than that done already in
digital computer chips which runs normal 32-bit (or
slightly higher, eg 64-bit) Personal Computers today:
there is no 'quantum computing' and never will be, except
that people can make-pretend that they are programming
directly into quantum theoretical possibility fields and
make-pretend that they are more aligned to the future by
doing so whereas in fact they are wasting their time on
writing over-complicated and still digital algorithms that
has no promise of any significant improvement over a
digital computer. It is already harnessing quantum powers
because that's what silicon transistors, big or micro,
are all about.
  So back to the two points of desperation and conflict in
the minds of young people: one, is it against God to be
positive to invasive treatments such as abortion? In this
phase, here, where billions compete for few resources on a
steadily more polluted planet, it would be grotesque to
try to say that the wish of the creator is to go against
the wishes of his most beautiful creations in this bodily
trivial regard that is so easily handled by modern
medicine. One doesn't have to be a socialist to approve
of being rational, simple, wise, and to be pro-abortion is
entirely and in all ways perfectly compatible with being
pro-God; and this does not preclude the understanding that
there can be a future, a different phase, a planetary
nomadism, in which the proudest creation of God, has a
more directly God-experienced situation in which there is
such an abundance of joys, also sexual joys, that all and
everything political becomes very different and the past
reasonings fairly much gets dissolved. Which is to rescue
a bit of the profound truth of the spiritual traditions.
One can think both thoughts in one's head.
  The other topic of huge concern is: does anything have
any sense anymore, in terms of how all statistics shows
that planet Earth appears to be, seen in terms of cycles
of hundreds of years, or thousands of years, to be rather
fragile and, if not smashed by a large unseen asteroid,
soon undergo too many challenges that there will be any
humanity left on it? That is the real perspective given to
school-children all across the planet where children
are as fortunate to go to a school that teaches anything
at all except route repetition of scripts as determined by
shoddy leaders.
  I will answer in two ways. One is that with all my
(grand or small) intellectual powers, and with all my
(right or not) faith, and with the entirety of my
instincts--and intuition--and my intuition, I know, is
formidable and I will not excuse that statement--yes,
absolutely, there is no doubt that humanity always have a
future that everything we do in the present matters. There
will be, miraculously or not, a transition--not to



rediculous hostile planets like Mars or Venus--but a real
transition, and in time, so humanity as a core and essence
will not just survive, but super-fantastically so. I'm
sure of it. And I'm not talking a rediculous transition
into a 'digital form' of personalities, as if a
personality were merely an algorithm plus some data. I'm
talking real living human beings and cars and computers
and sex and fun and fashion and music and beaches. What
exists now will, by warps, exist even more beautifully in
a future of humanity, I'm sure of it. So that is one form
of answer. These warps must take, I think, the super-model
theory seriously; the algorithmic approach to quantum
science won't do.
  The other is more 'zen'. It goes like this: if you don't
believe in God or soul or such you believe that all is a
machine and well, then, just live in the present and don't
care one whit about the future for a machine is just a
machine and it doesn't matter in the least whether it
continues or not. So if you're an atheist, in this phase
of humanity, live up to it and learn to the art of smiling
in the present and for God's sake don't go around
depressed because of statistics. Who cares.
  And if you do believe in God, well then, do believe, and
don't doubt it and for that reason don't worry and learn
the art of smiling in the present and for Christ's sake
don't go around depressed because of statistics. But then
don't disallow God of playing around with half-revelations
here and half-revelations there and of wanting phases and
allowing medicine to come to the point it has for a reason
--the reason of being humane. Don't--as the USA policician
Kamala Harris likes to say--let the government come "in
between" the woman and the doctor. Totally the humane
thing to say, whether for the atheist or the believer. The
men who honors themselves and their texts as more
important than women have misunderstood God's creation
entirely: God made women first, and men as an after-
thought, in order to help women make more women. You can
say that without saying, like the singer Arianna Grande,
that 'God is a Woman'.

That there can be 'another profound truth' in the opposite
of one 'profound truth' is something I also think we could
consider connected to what we very loosely can call
'capitalism'--of which the type I support is a capitalism
of a small-business type--and what we can call a
'compassionate approach to collaboration'. I have touched
on this sort of thing other places, and will but quickly
refresh the themes here: it is not automatically so that
an emphasis on money leads to a decline of 'compassion'.
Nor is it the opposite thesis of Dialogue. A market where
handcrafted products and lovely services are offered can
also be a compassionate market. The fact of setting a
price can create an interesting dialogue. There can be a
direct personal motivation towards quality, not just
quantity, once a product or service has got a price. There
can be a reduction of the potential for quarrels when one
is clear about a leadership process in which contributions
are paid for in a pre-arranged way, with prices people
have agreed on. A price can contribute to disentangle a
too convoluted collaboration process and contribute to
sorting out individual preferences and priorities for the
businesses involved. Formal agreements, possibly with
prices, can be excellent as groundwork for top dialogue.
  And in order to facilitate a market, there is a meaning
to building up brands, so-called 'brand awareness', in the
sociology of a market. This can go together with launching



services and products that have neat names, perhaps code
names of one or some letters and a number.
  Indeed, finding a captivating sort of code name or
number for a product may vastly assist its introduction in
a market. In that sense, there can be a certain magic in
setting a code name or number to a product. Perhaps the
product or service is simply named by a single letter, or
two letters; or by a number. While this may give a great
initial boost as for launching this product, there is a
caveat: nobody has the right to trademark or copyright the
letters of the alphabet or any number. These are for all
humanity to enjoy, be aware of, play around with, express
themselves in, and in an important enough sense, _own_.
That means that once a service or a product, or even a
company name, has been launched given one or two letters,
or a number, it must change this to a more particular and
less universal name to avoid 'upsetting the magic' in the
letters and numbers per se. For instance, if a product was
launched under the name "737", it must of course change
this name--which is but a number--because it is inherently
meaningless to suggest that a company can in any way
possess or own something universal like a number. And
while amazing effects and visualizations may be associated
with some numbers--just look at 37, for instance, which is
astonishing in its radiance; it's a prime; it radiates up
from 3, one of the most organzing numbers we have, to the
natural number of structure and hierarchy, 7; it is a
prime number; when multiplied by three it becomes three
one's, 111, again signifying something great; and when
multiplied by its component digits in the ten-digit
number system, it becomes the number so talked about in
Christian texts, as 3 times 7 times 37 is 777. When a
company adds a digit to 37 and seeks to possess it, the
number ceases to help the company and instead becomes a
burden to it. Add a letter to the number, and it's a
different story. The same when a company tries to become
identical to one letter, or two letters: at first it is
fun; but then it becomes like a joke one has heard before.

At any rate, both for enjoyment and to spot outrageous
mistakes, and to refresh memory of just where the book
text has come before it's extended, I read the earlier
passages. And I wince at grammatical mistakes, at peculiar
uses--or lack of uses--of such as commas, misspellings of
names, and ponder sometimes over whether a "not" is
lacking in a sentence for it to sort out correctly ;)
  I think the following is the case: those who are the
most concerned about punctuation and spelling in their
natural language essays are those who are the least
competent in programming. For these people appear to me
'afraid of disorder', and so seek to impose, on the flow
of writing, a rigid scheme of correctness because they do
not regularly experience the joy of perfect syntactical
order in formal expressions.
  I do think that there are many concrete instances where
top spelling accuracy in natural language makes sense: one
is where a paragraph is high-lighted and placed in a hard-
to-avoid location like up front on the panel of a machine.
To read the same paragraph with the same uncorrected
spelling errors daily or each time one encounters that
machine would be annoying. Another instance is when, for
the sake of generating a genuine laugh-out-load experience
we have comical writing where elegance and effortless
quick comprehension, drinking in the language in a
rhythmic way, requires a sentence construction one doesn't
look twice at and blinks--though of course, there may be



elements of that comics which works even better with "just
the right mistake".
  But in somewhat more explorative, more philosophical
texts, what is the point of perfect punctuation? In spoken
language we regard it is as part of personality and of
body language to stumble in a sentence and begin, half-way
afresh and start off in another direction, or to cut off
a sentence after just some words because things are
tacitly understood--and so on. Why cannot this personality
carry into written language? I saw, for instance, I had
written a word I cannot remember having seen before, but
which in the context above was nevertheless perfectly
comprehensible--when I said, such-and-such is now all
"implented". I have used the word 'implemented' so often
above--perhaps too often--that it is hard to avoid the
understanding that the intended word is 'implemented' and
not 'implented'. So why correct it? Is this not about the
process of thinking? Is it a reality that thinking gets
clearer when the official schoolbook rules of natural
written language is imposed on the flow of explorative
writing? Or is it rather a stultifying of process which
may obscure certain hints about the actual flow of
thinking--and if there is anything we don't need in
philosophical exploration, it is conscious obfuscation.
  On the other hand, things get naturally obscure,
sometimes, without perhaps intending to, when spelling
and punctuation and/or grammar isn't correct, and in a
philosophical text--unlike a comedy--to pause and ponder
over what on Earth could such-and-such mean--may be a very
philosophical 'effect'--in other words, quite fruitful,
even if perhaps not consciously intended at the moment of
writing. The love, philos, of wisdom or truth or knowledge
--sophia--as philosophy, requires a humility of person
relative to something infinite and beyond. One thing is
what the person may have intended; quite another, and
often far more significant, is what the text, in a
philosophical context, may lead to of contemplations,
questions, creative ideas, intuitions, insights and
perspectives. My proposition is, as it has, I think,
always been as regards this theme, that philosohpical
texts should have a body language that goes beyond
conventional grammar, punctuation, spelling and
sentence construction. I'm grateful for many conversation
with the Norwegian philosopher Arne Naess also on his view
on Baruch de Spinoza's ethics philosophy. Spinoza wrote in
Latin in an almost geometrical manner. Naess stressed a
similar point--namely, that here it's more interesting
what _we_ think such-and-such ancient text can mean--and
the exact meaning of the author possibly less interesting.

As to the notion that the opposite of a profound truth
might be another profound truth, it occurs to me we should
also consider the opposites that already, in ancient
Greece, Plato framed so well--that of democracy versus the
autocratic rule or dictatorship. To my mind comes the
image of a dancer--a well-trained, strong, flexible, agile
dancer, who can do magic with her body. At one point in
her mind, she has--if she's truly expert--a choreography.
And because of the elegance and flexibility and strength
and well-tonedness of her body, the choreography can
unfold itself, and if it is a good choreography, the dance
is good. Let the dancer be a metaphor for a society. If
there is one point that controls the movement, and the
movements are expertly trained and harmonious, that is
akin to what Plato called an 'enlightened dictatorship'.
The autocrat, the ruler is that one point. If that one



point is corrupt or self-centered or destructive or too
greedy, then all the expert elegant force of the whole
society is to no avail--that is a 'bad dictatorship'. In
our metaphor, it means that the ballerina, however smooth
and supple in her limbs, however flexible and strong and
musical, makes a mockery of the dance because the
choreography is bad.
  An argument often made is that since one cannot
guarantee that the autocrat is good, a democracy is a
safer bet. There are usually at least three ways in which
a democracy is different than a dictatorship. The first is
that the leader, chosen by votes, are typically changed
a couple of times each decade. The second is that this
leader usually doesn't make decisions alone, but in a
process of constant consulation with possibly a vast swath
of assistants, institutions and allies. The third is that
the decisions, when made, aren't carried out by a smoothly
tuned, obedient regime, but is filtered down through yet
more democratic-like institutions before they become
implemented. In a democracy of a socalled "socialist"
bent, people are principled in respecting people at large,
for the care of the largest quantity of people is
considered a value in itself; and this care has a priority
over executing the decision of a leader or leadership.
  In the metaphor of the dancer, a democracy will, I
think, more typically be the untrained dancer, indeed one
who cannot make up her mind how to dance, except so
slowly that it can hardly be called a dance anymore. There
is neither the focus on training nor on having a clear
and good choreography nor on unfolding it as timely dance.
The immediacy exists in the democracy between any two or
more citizens in the democracy who happen to meet well,
but the immediacy one can sense in the image of the
first type of dancer--who with graceful, strong, slender
limbs unfold delicately a wondeful cheography--has simply
dissolved. What rescues democracy is that its inertia,
its 'absent-mindedness', and so on, may be much better
than an autocracy gone wrong. The strong, powerful dancer
is all the more absurd if the choreography is hopefully
missing the mark; how much better it is with the fat
indecision and mediocrity of the democracy then!
  Human beings, including autocrats, are not only mortal
but their brains decay each decade after adulthood. While
a dictator may at his or her peak be wise and intelligent,
he or she will not remain that way; and when that dictator
dies, the children of this dictator or those who, by
appointment or revolt, take over, may be stupid from day
1. This means that dictatorships, despite possible initial
advantages, typically lead to self-destructive societies.
  The choice of political system cannot be independent
from worldview. In the atheist worldview, there is no
higher intelligence and no absolute values apart from
what humans adopt; and so, generally, that tends to
suggest democracy. In a monotheistic worldview, some may
be better 'instruments' in listening to the Deus than
others and if the society is lucky enough to have such a
one as autocrat, and in addition the rest of society is
streamlined to implement--as with the image of the
well-trained graceful dancer--that could make of course
the best sense, but only as long as the instrument is a
worthy one; and for human beings, that's always a limited
time.

To return to the far more mundane topic at hand:
In the next chapters, let's define level 10,000,000, with
a high-priority task in this robotic FCM network. This is



incomparatively more complex than all the other levels,
because it acts to organize everything else, the way we've
sketched this FCM computational node network. To make
sense of the level ten million program, go back to the
upcoming chapter repeatedly, with 'about level ten
million' in its title.

*MAKING ROBOTIC FCM PROGRAM:ABOUT LEVEL TEN MILLION*
Yes! Consulting the list of triplet values we made in the
earlier chapter that also had level number descriptions,
the first value of triplet# 5 is the most important for
the upcoming node. This is the number that, when one is
added to it, will be the next step to be performed.
Triplet number 5 begins at position# 22, so this has step
number. Whether or not the main function for the node is
put into the first triplet, or in another triplet, such as
this, doesn't make any difference in practice for this
particular FCM network.
  And the single high-priority node we have sketched ideas
for has indeed many steps; when it is complete, it is the
task of this node to reset itself (and earlier on, each
elementary action node) and, via 'soft activation' field
in the level 100 node, to allow the network switch go over
to GPS and show the glorious result of the work this task
node has undertaken.

In the chapter describing the triplet uses and links, and
also the levels, it's mentioned that links to match-
oriented nodes come first, and links to subtasks and such,
second--of the hundred links a node can have. The node
we're about to make here at level ten million is full of
links. It should have links to all the fourteen match
number nodes we've already set up, as well as links to the
'elementary actions' we're going to set up.
  It appears to me that we should have some neatly named
functions to make the coding of this function easier. We
can have one called SOFTACTIVE, which has link number as
input, reaches out to the node linked to by this number,
and sets the 'soft activation field', #21, to DANCE. We
can also have functions called something like INSOFTMAIN,
which we can, as intended meaning, think of as 'get in the
(previously soft-activated) node's main value'. Its input
is the link number, and it gives the first value of the
first triplet of that linked-to node. These should also
have the warp to the present node as input. By avoiding
a 'global variable' as to which node is present, all the
'computational attention' is through the TRANSLUCENT loop
to what it calls of node functions with the warp to what
it has 'decided' is the present node as input. When we
have several nets being performed alternately, global
variables to refer to which node is presently being can
sometimes require extra explanations.
  And we can make more than one, eg FTSOFTACT, which we
can think of as 'from-to soft activation of nodes which
are linked to, in the range specified'. When the fourteen
match nodes are going to be activated, we want something
like this call--here assuming TX has been used to store
warp to the present node:
  1
  14
  JX
  FTSOFTACT



We can also have a FTSOFTACT5 that puts value 5 there
instead of 1, since these are the two types of activations
for the match image nodes here.
  And maybe we could make an input-version of FTSOFTACT,
--one that compares and picks the highest-numbered pmille
in the main field. It could be called SOFTACTWIN. It would
have a range as input, like FTSOFTACT, and would scan for
the topmost pmille match number--ie, the winning node in
this range.
  When we make such a function, keep in mind that this
would pick any one of the winners when more than one share
the winning value. Here, that's perfectly alright. In
another context, generating a list over those sharing the
highest main value might make more sense. What is the key
here is not which exact match node that gives the winning
pmille, but which 'elementary action' that is leading one
or another match node to give a winning pmille.
  How many 'elementary actions' do we have here? It's up
to us, as long as it makes visual sense. When we start up
the app made just before the one we're working on now, the
app# 1005768, and we feed it with a 'binary image'--ie,
one that is in each pixel either black or bright green--
it quickly shows the match numbers; and we can also use it
to show the match images. Each elementary action we make
should have as a potential, when used right, to increase
the match number of, say, an image we compose in GEM by
means of a modification of the inbuilt match images--
slightly messing it up and letting this app we now build,
app# 1005769, improve it again.
  By instinct, I suggest ten 'elementary actions' here,
each relating to a different 'line' (broadly defined) of
the 116x160 binary matrix image.
  That means that, on the task side of the link section,
we're going to have ten links there. What more do we need
as for links? We are going to activate GPS FCM net to show
the result when an elementary action has been determined
after trying out the various actions and getting the match
numbers for each.
  So, to summarize the idea of how this net does this, as
organized by the higher-priority task node here at level
ten million, each elementary action will lead to an
activation of all fourteen match nodes, and in a field
in the task node we store the number of the link of the
best-performing elementary action so far recorded relative
to the highest increase value of the best-matching match
image. So before any action is done over the copy image,
there is soft activation of the match images on the main
image. That's step 1. In a field in the task node, the
number of link to the best-performing match node, along-
side its value, is stored. If the value is already 1000
pmille for a match node, it means the image is identical
or practically identical with a match image, and nothing
more remains to be done, and computational time goes over
to GPS again.
  We don't have to only use the uppermost triplets for a
task if it needs extra places to store info; but we also
have the luxury values and my sense of it is that we're
going to use some of these now for task counters and such.
  Remember that a simple SCAN on the word TRIPLETS should
give you the short-hand overview over a node when you have
the Third Foundation or an extension of it at hand. And
this foundation has proven to be extremely versatile; the
extensions of it so far has been entirely in alignment
with it and without any changes of core code. So it is a
permanent, stable, robust, trustworthy aspect of
programming. While ideas of a fourth foundation, and such,



occassionally will be explored and perhaps realized, this
is meant to function alongside all the existing
foundations and not to replace anything and to be coherent
with all the core tenets of G15 PMN in its Third
Foundation fulfillment.

We're going to create a lot of links for the higher
priority node and for this, we'll make some auxillary
functions using in particular FNAMW, which gives us the
warp of a node once we input its name. That presumes, of
course, the node has already been created. So we'll add
the links to the match nodes as soon as we've made the
higher-priority node on this level, ten million, and we'll
use a variant auxillary help function when we are at the
elementary actions level and wish to add these also to the
higher-priority node. Of course, it is possible to create
the elementary action nodes before we create the this task
node, and sort the levels afterwards; but it is good to
concentrate on completing the higher-priority task, also
because it sets the constraints for how the elementary
actions should be shaped as nodes.

As we said, step 1 is activation of the match nodes on the
main image, and step 2 fetches best match number. We don't
strictly have to store which match image this refers to;
what is clear is that there only so much 'clearing up' the
elementary actions can do and when there is little or no
increase of the highest match number relative to how it
was before the elementary actions were tried out, then the
higher priority task 'decides' that its action is
fulfilled and it soft-activates the node that sets GPS on.
It's enough that the previous highest match number pmille
is stored--whether that came from matchings over the main
image or from a recent change of it through elementary
actions. By the way, step 2 stores best match number in
one of the luxury fields, pos# 43, and it's read in by
step 4.

We define step 3 as sweeping over many cycles, which means
it has 'substeps' or sweeps: each elementary action on the
simulated image will lead to a cycle where the match
numbers are generated, the highest pmille stored when a
particular elementary action got it better than all the
previous ones, alongside the number of the link to this
elementary action. In our app# 1005769 each elementary
action will work on a fresh copy of the main image; we
must remember to program in an oft-repeated copy action
there. We could designate a fairly high-level subtask
to do this, as a separate node, but we'll keep it one
node here.

Step 4 will be to let the elementary action that the task
node 'discovered' as the best one, act on main image and
store it back to disk. This on condition that the found
increase of match pmille was a significant one. We can
experiment with settings here for what this threshold
should be, perhaps 15 pmille or so as a minimum. Luxury
value at pos# 43 holds the previous best match number for
the main image. In this experimentative FCM app as we plan
it, the interactor with the program will click repeatedly
to get the FCM network to "do" something with the main
image. At some stage it has got nothing more to do--which
is when the improvements on the best match number is
marginal; at which point the interactor may have a go with
a different main image, perhaps as prepared in GEM. Had
this been an FCM network running a live robot, we would



have made a triplet or luxury field have a flag that says,
like, "This goal has been adequately achieved". Here, it
will be obvious to the interactor who clicks repeatedly in
the app to see the modifications done, one after another.

Step 5 is that the higher-priority task node resets
itself and is ready for more cycles should the interactor
with the program want such, as indicated, typically,
through a letter-warp in the GPS. The interactor will
click repeatedly on the letter, each time the 'winning
action' is performed until, given enough clicks, as much
has been done as can be done given the definitions of
these actions.

This book has more than achieved its programmatic goal
when step 3, with all its sweeps, have been programmed.
The remaining steps and the levels with higher level
numbers--here, essentially the elementary actions, are
trivially easy in comparison.

So we use the term 'sweep#' for the substeps under a step
in this sort of node. The steps can be functions called on
from an array like this, where we use the phrase 'hptask'
as abbreviation for Higher-Priority Task--this we perform
after we have defined functions for each of the 5 steps:
  HPTASKFUNCS=
  ^123456789.
  ^HPTASKSTEP1
  FF
  1
  HPTASKFUNCS
  YA
And so on, up to four. Here's number 2:
  ^HPTASKSTEP2
  FF
  2
  HPTASKFUNCS
  YA
Tiny arrays can be made as constants, rather than via
variables, when the quote fit on a single column, thus
simplifying expressions and good to use with AY and YA.

Let's assert that each function of the HPTASKSTEP type
itself will increase the triplet value that holds the
present step number for the task. As we said, in the
case of step 3, it has many 'sweeps', ie, cycles of the
TRANSLUCENT FCM loop, before it completes. Let us look at
what these are in a list-form, so that we can figure out
how to organize them by one or more numbers. These sweeps
can also be organized through numbers similar to step
numbers, and each sweep might as well also be in an array
of functions as we have already planned for the steps.
  We can use the Luxury Values to hold, in updated form,
  *the current sweep number
  *link# for the recently recorded best-performing subtask
  *the pmille it got from this subtask
  *the pmille the main image got from the highest-pmille-
yielding match prior to the tentative elementary action
  *the current link# for the subtask next to be called on
--it needs to try out all 10.
So there is a Luxury Value that stores the link number for
the present subtask under 'evaulation'. Next, the sweeps!

SWEEPS for step 3 of the high priority task-oriented node;
as with the steps, after a meaningful amount of "work" by
sweep has completed, it lets the computational force go on



to other nodes--and updates the sweep number only when it
has had enough cycles to complete its task.
  1. Reset the values for a fresh new series of sweeps.
Importantly, that involves setting the elementary action
to be considered to the _first one_. The last sweep # will
go up again and again to the next sweep # in order to have
'considered' all the elementary actions and picked a
winner.
  2. Copy the main image over to the copy-image and soft-
activate the present elementary task under 'evaluation'.
In a real robotic context, the completion of that task is
out there in the environment involving servo motors and
such, and it can take seconds, even very many seconds, to
complete. Here, we can confidently update the sweep number
to the next step at once, since we're doing a virtual
physical action.
  3. Soft-activate the whole range of 14 match images, and
with the setting that they work on the copy image.
Reminder: the main image represents the 'current state of
affairs', while the copy image represents what we may
(metaphorically) call the "thought of the action". When
you're about to do something, then in your conscious mind
you'll have a sense of the likely effects--this is the
algorithmic equivalent in the FCM context.
  4. Fetch (one of the) best-performing match pmille's and
in case this is better than the already-stored best match
pmilles, update the pmille and also record which
elementary action is so far the winner candidate.
  5. Update subtask link# by one. If it exceeds the
quantity of elementary tasks, which is here ten, the
sweeps are complete; otherwise, it continues with more
sweeps here beginning with a fresh copy-over of main image
to copy image--ie, reset the sweep count back to sweep# 2.
Note again that the key loop here is the TRANSLUCENT loop
as defined in the core G15 PMN, so here we merely update
the sweep number rather than bundling the sweep within the
typical LL .. LO type of loop.

And in the high-priority task node, the _steps_ it has it
goes through sequentially, as the TRANLUCENT loop calls it
in fresh cycles. In this node, then, the step counter
isn't set back to an earlier point except when the task is
complete. But it is perfectly okay to use these step
numbers also for that which in practice amounts to
'loops'. In other words, not just the sweep numbers but
also the step numbers can be made to be loop-alike.

The functions representing each step in the high-priority
task's sweeps under its step 3 we can put in an array
called HPTSWEEPS. These functions, as the HPTASKSTEPS,
take one input, the FNWARP to the node itself. Their
activity reflects in how the triplet and luxury values of
the node change, rather than an output from them on stack.

So, as a start--we have to go slowly here so that all the
details of the FCM node network gets talked about enough--
let's set the level# correctly:
  10000000
  SETFUNDLEVEL
The node here is high (not top) priority, the highest we
have in this example robotics FCM program, and it is a
hugely organizing node. As sketched in the previous
chapter, and in the overview chapter over the triplet
values earlier on in this book, these are the fields, and
their positions, of concrete use in this programming for
this node now:



  # 21 'Soft activation field'. For this node, it's DANCE.
  # 22, the first value of the fifth triplet: Step#
This is reset by the node to BASIS after it has completed
a coordination with other nodes to 'tidy up' the main
image; it is increased by this node itself by one as it
goes through the steps. The step 3 is the only one with
substeps, ie, 'sweeps'.
  # 24, the third value of the fifth triplet is used as a
flag for subtasks and elementary actions to indicate
completion of task, but not necessary to use here, since
even the elementary actions will for sure complete their
job after only one cycle.
  Luxury values in the node:
  # 40 Sweep number. Step 3 uses this, and these:
  # 41 link# for the recently recorded best-performing
subtask, which may increase as it cycles through the
various tentatative subtasks performed on the simulation
  # 42 the pmille it got from this subtask--and in this
FCM node network, the subtasks are exactly the elementary
actions; this pmille and the next refers to the best match
number
  # 43 the pmille the MAIN image got from the best match
--this is in order to compare whether the gain is
significant enough--stored here by Step 2
  # 44 the current link# for the subtask next to be called
on. During the init of the sweeps, this is set to 15 since
the task-link comes right after the 14 match-oriented
links.
  Now, let's define more along the lines we've started to
indicate. We have, in previous chapter, indicated that we
want functions SOFTACTIVE, FTSOFTACT, SOFTACTWIN; for each
step we want HPTASKSTEP1..HPTASKSTEP4, which go to array
HPTASKFUNCS; for step 3 we make an array called HPTSWEEPS,
and make HPTSWEEP1..HPTSWEEP8 functions and give to this
array. The main function for the higher-priority task we
can, by FNACTCHERISH give number 4750 (in the standard
definition of the FNACT function array, we can use any
so-far unused number up to 5000; the 47-series has, as
far as 'number significance' goes, an association with the
robotic, and the high-priority node is midway in the
level numbering, thereby 4750). We can call the main
function for the higher-priority task node for HPTASKNODE.
Now let's go to the work of completing the programming of
the node on this level--and then the remaining work to
complete this FCM robotics app is certainly easier.
  When we make HPTASKNODE, we might as well set the first
triplet to BASIS, as it is task-oriented, not match-
oriented (though it has a match-like aspect, of course).
We shall also make helpful functions, one or two auxillary
functions, to add links quickly. The first 14 links are to
MATCHIMG1..MATCHIMG14. The next ten links we add once
we've come to the more elementary actions--there are many
ways of doing this of course, we could have made the
elementary actions first and flipped the level numbers
back and forth and sorted with BS afterwards. But here we
stick to the gradual increase of level numbers, there's a
"node-near" first-handedness about that. And if we want to
add all the elementary actions after we've made them, we
can have two node names as input to this auxillary
function--that which the node is going to link to, and
that which is the name of the node to get that link; the
latter being, in this case, HPTASKNODE.
  The word 'link' is easy to say and perhaps said too
often in this context; a little 'word-magic' is sometimes
making programming more full of meaning. In the human
brain, there are myriad ways in which some form of



connection or resonance can be established between two or
more regions of brain/body. Let's pick a word inspired by
our sense of the jam session symphony of the coherent,
resonant human nervous system, without implying that we
are encapsulating it. It is merely an inspiration; FCM is,
after all, going to be an expression of mentality; and so
to seek inspirations are to the point.
  Suppose EATASK1NODE is Elementary Action Task 1 Node,
and we wish to put this into link position# 15 of the
HPTASKNODE. How about this syntax:
  15
  ^EATASK1NODE
  ^HPTASKNODE
  RESONATE
And the next:
  16
  ^EATASK2NODE
  ^HPTASKNODE
  RESONATE
Like 'entrainment', the concept of 'resonance' is more
physical and much less psychological/mental than words
like learning/training and reasoning/cognating. So words
like learn, train and reason should be avoided in all
scientifically well-grounded, high-integrity discussions
of the features of pattern matching node networks and
their capacity to enact a meaningful goalsorting in terms
of action, such as robotic action. It may _appear_ that
the node network "learns", but if the quotes are taken
away we are over to sales tricks, hypnosis-attempts and
a kind of 'gobelian propaganda'. The lowest kind of
politics known to humanity uses gobelian propaganda--a
repetition of lies with the intent to make gullible people
come to take them for granted more or less like truths.

So RESONATE is, psychologically, not a presumptious term.
It has in it a humility, psychologically speaking, and
this is a token of good work in the realm of FCM robotics.
We should have a variation of this function when the node
linked to is the present one, just defined. When we have
just defined HPTASKNODE and wish to refer to MATCHIMG1 we
will have a similarly-named auxillary function, that we'll
define in a moment. It will look like this, for the two
first links:
  1
  ^MATCHIMG1
  RESONATEWITH
  2
  ^MATCHIMG2
  RESONATEWITH
The RESONATE and the RESONATEWITH functions have in 
common
that they add 49 to the link# given, and check at pos# 47
that that number is already higher than the link number,
and if not updates the quantity of links in that position.

Let's do the rest of level 10,000,000 in upcoming chapter.

*MAKING ROBOTIC FCM PROGRAM:LEVEL TEN MILLION FUNCS*
Let's first make some of the functions we need to complete
this level--and we can begin with RESONATEWITH. It has two



inputs on stack, the link# and the node-name. It will use
our friend THISFUND similar to how ADJUSTFUND does it--in
fact, I will scan up that definition now and get ideas in
order to make the functiion. It adjusts #47, the quantity
links in this robotic node, only when the present link#
exceeds its existing quantity. Link# are in range 1..100.
  Right, this is it:
  RESONATEWITH=
  |IN:L#,FNNAME
  FNAM
  SX
  S3
  49
  WHEREISFUND
  S4
At this point adding one to i4 gives us warp to link# 1,
while substracting two from JX gives us warp to amount.
Also iX has the node# for the node to which we will make a
connection, and i3 link#. Let's make it:
  iX
  i3
  i4
  KW
And let's get the quantity updated when necessary:
  Q4
  M4
  LK
  i3
  MAXOFTHIS
  M4
  KL.
The function RESONATE is similar but doesn't lean on
THISFUND, so we must mimick the effect of WHEREISFUND to
get it. This should work--here I copied and pasted the
RESONATEWITH functions and modified until I got it:
  RESONATE=
  |IN:L#,TONAME,
  |FROMNAME
  |ACTION:LINK#
  |IN NODE NAMED
  |FROMNAME TO
  |NODE TONAME
  FNAM
  SX
  FNAMW
  TX
  S3
  49
  JX
  AD
  S4
  IX
  i3
  i4
  KW
  |QUANTITY:
  Q4
  M4
  LK
  i3
  MAXOFTHIS
  M4
  KL.
We have talked of wanting functions SOFTACTIVE and
INSOFTMAIN above, time to construct them. Link number is
from 1..100 and should be added to 49 to get the position



in the node; add this to the nodewarp and we can fetch the
node number stored at that link. This is to have its soft
activation field, pos# 21, set to 1.
  SOFTACTIVE=
  |IN:LINK#,
  |FNWARP
  49
  AD
  WK
  FNWARP
  DANCE
  W
  21
  KW.
  SOFTACTIVE5=
  |IN:LINK#,
  |FNWARP
  49
  AD
  WK
  FNWARP
  5
  W
  21
  KW.
And here is INSOFTMAIN:
  INSOFTMAIN=
  |IN:LINK#,
  |FNWARP
  49
  AD
  WK
  FNMAINVAL.
Time to get FTSOFTACT and SOFTACTWIN constructed, as we
have earlier planned:
  FTSOFTACT=
  |IN:FROMLINK#,
  |TOLINK#,
  |FNWARP
  TX
  S4
  S2
  LL:1
  i2
  JX
  SOFTACTIVE
  i2
  i4
  LT
  SE
  Q1
  H2
  LO.
The FTSOFTACT5 is the same but that SOFTACTIVE5
substitutes SOFTACTIVE.
  Here, H2 'hitches' up i2, link#, until it reaches i4.
Amazingly, SOFTACTWIN is very easy:
  SOFTACTWIN=
  |IN:FROMLINK#,
  |TOLINK#,
  |FNWARP
  |GIVES:WINVAL
  TX
  S4
  S2
  BASIS



  LL:2000000000
  i2
  JX
  INSOFTMAIN
  MAXOFTHIS
  i2
  i4
  GE
  SE
  EX
  H2
  LO.
These routines assume meaningful inputs in terms of from
link# and to link#. Be sure to notice that SOFTACTWIN has
an output, a result, on the stack, and that that has to be
handled by the node function that makes use of it.

*MAKING ROBOTIC FCM PROGRAM:MORE FUNCS AT LEVEL 10 
MILL*
The SETFUNDLEVEL has been set to 10,000,000 and I'm
looking up here and there in the recent chapters to find
what we have to define to get through with this level--
clearly the most advanced, as far as definitions go, in
this FCM network. We have defined the array HPTASKFUNCS,
and will put it to good use in a moment. We need an array
for the coordination of the processes under step 3, which
we called 'sweeps':
  HPTSWEEPS=
  ^123456789.
When we define the individual sweeps, we put them into the
warp by this sort of statement:
  ^HPTSWEEP1
  FF
  1
  HPTSWEEPS
  YA
To say that we put a function into an array is, of course,
a shorthand for saying that we put the warp of the
function into the array. The power of this action is
greatest when it is transparent to the programmer what the
computer is doing. One can make various languages that
mimick some aspects of warps but conceal some features in
a fancy syntax but this will at some point suffer because
of the lack of transparency in what is being done: a case
in point is when a language is designed to have a syntax
that 'allows a function to be passed as a parameter'. This
is not what is the case, just as the fact that within a
single computer, hiearchy is, generally speaking, not how
RAM is organized, rather it is a sequence. And it is never
really a 'function' that is passed as parameter (unless
one means the quote of the program definition for the
function), but rather the warp to it. Nor is RAM organized
as 'lists' that can come and go. Nor is program
performance a result of a computer 'seeking' a best
logical match given premises: all such syntactical
structures have to be hammered into sequential algorithms
doing things with a sequential RAM that consists of
nothing but numbers and some of these numbers are warps,
while some represent data including more readable numbers
and text. And the only natural way algorithms can call
several other algorithms over several levels is by means
of a stacking of parameters in an array of the 'last in,



first out' type, which, together with global variables, is
the ground-approach to all computing for its sheer
simplicity--a simplicity so strong it can effortlessly be
implemented at the electronic level. What you experience
with G15 PMN is a direct connection to how the computer is
organized--or can be organized, in such case as when you
run a PVI, a 'practical virtual implementation' of it.
And this is a training of mind, a training of the human
mind--for it is having an additional language, the most
natural of number-oriented formal languages, as added tool
in its toolbox for self-attention.

Anyway, we have enough definitions that we can get the
main foundry definition at this level going:
  BASIS
  4750
  BASIS
  &HPTASKNODE&
  FNEASYACT
As FNEASYACT is defined, the function number, here 4750,
is put into the centre of the first triplet. While in
many cases it may be of value to 'tune' the triplet
values to the function in them, as we set it up here,
every node makes use of the first triplet whether it's
match or task oriented--as regards the main node function.

The 'soft activation' flag:
  DANCE
  21
  ADJUSTFUND
Earlier on, we have clarified the RESONATE and
RESONATEWITH approaches to set up links, so we won't
repeat it again here.
  So far, so good. The giant 4750 function is giant only
in how much it controls, while it is composed of a number
of rather tiny subfunctions. This is the toplevel--and
notice that when we do things through a FCM network, we
allow TRANSLUCENT to do the looping--the node merely
handles the counting and the sorting out of what step is
next. The steps will update the step number, at pos# 22,
but since it starts out at BASIS, we add one before the
step is called, every time. This drives the steps:
  HPTASKDRIVE=
  |IN:TR#,FNWARP
  SX
  SH
  |FNWARP TO STEP:
  iX
  22
  WK
  |ADD 1 TO STEP:
  UP
  i1
  HPTASKFUNCS
  AY
  PF.
  &HPTASKDRIVE&
  4750
  FNACTCHERISH
This is the number, 4750, that we put into the main node
we just defined, a couple of paragraphs earlier, namely
HPTASKNODE. You are free to make a node with an as-yet
undefined function number as long as you get it defined
before you switch on the robot! ;)
  Also, you are of course free to call on the functions in
an array such as HPTASKFUNCS in a definition before you



have given this array any content, as long as you get
around to give it content before you start up the program.
Let's give it content. That's our steps and the sweeps.

In this architecture, it is the job of the HPTASKFUNCS to
do such as reset the counter and--in our app--also let GPS
be called on after each elementary action by a soft-
activation of one of the first nodes. This soft-activation
is also going to happen when there isn't any elementary
action that provides salient improvement of the main
matrix. This way of doing it adds 1 to step number before
calling the function, meaning it's kosher to let the step
number be at BASIS at start of performance of FCM node
network.
  We have five HPTASKSTEPs to make. The first activates
14 match nodes over the main image and the next gets the
winning value. Here's step 1; step 2 will get them; step 3
is the 'sweeps' figuring out the correct next action;
while step 4 does it and step 5 resets. Each step will
have an action in it on the step number. Let's have a go
at them--and here FTSOFTACT rather than FTSOFTACT5 is used
since we're working first on the main image:
  HPTASKSTEP1=
  |IN:FNWARP
  SX
  1
  14
  iX
  FTSOFTACT
  iX
  NODENEXTSTEP.
See an earlier chapter, 'ABOUT LEVEL TEN MILLION..' as
to how to insert such as HPTASKSTEP1 into the HPTASKSTEPS.
  The function NODENEXTSTEP increases the step number
field at pos# 22:
  NODENEXTSTEP=
  |IN:FNWARP
  22
  AD
  1
  W
  KU.
And why don't we do a 'NODENEXTSWEEP' as well--the sweeps
have their counter at pos# 40:
  NODENEXTSWEEP=
  |IN:FNWARP
  40
  AD
  1
  W
  KU.
The HPTASKSTEP1 presumes we've got the links lined up: the
first fourteen are to the match nodes, the following ten
are to each of the possible elementary actions. In the
app# 1005769, and these apps come with source, ie, full
program code, there is a bunch of RESONATEWITH that links
this node to the previously defined match-image nodes, and
after the elementary action nodes are made, a similar
bunch of RESONATE connects them to this node. We can't
link them up all at once because a link is something you
do to something that has been defined, and, as you might
recall, we move through the levels:
  input-level => matchings => higher tasks => elem.tasks
And in this our app we have just one higher task, the one
that has this very elaborate algorithm with many steps and
also many sweeps under one of the steps in it.



  So, my dear FCM programmer, let's bear in mind that when
we say of a more usual function that it has many steps, we
typically mean that it starts on the first and goes
through them and then exits. But the style of function we
choose to implement in our computational node networks to
drive robots, is so that it must allow other functions
some computational time each time it has made even the
slightest step (or 'sweep'). The way I use the word
'polling', that's what it's about: the FCM network is
polling its various nodes, or the functions in the nodes;
and this gives a sense of some degree of "simultaniety" of
the digital processing.
  Therefore, with our nodes having triplets, and triplets
--or at least one of them--having functions, it make good
sense that at least one of the values in the triplets has
a "step number". In that way, the function can 'see' how
far it got the last time it had computational focus--ie,
the last time the TRANSLUCENT loop called on it--and carry
on from there, and update its step number. And when a step
has substeps under it, we can call that 'sweeps', and by
analogy, there is a sweep-number stored somewhere in the
node (whether in the triplets or in the luxury numbers).
  Onwards to step 2. We're going to bring in SOFTACTWIN
and it fetches the best match number; in the overview
chapter ABOUT LEVEL TEN MILLION we declared that the lucky
luxury value to receive the winning lottery ticket number
is # 43. We're talking here the main image. Thereby,
  HPTASKSTEP2=
  |IN:FNWARP
  SX
  1
  14
  iX
  SOFTACTWIN
  43
  iX
  KW
  |RESET SWEEP#:
  40
  iX
  RESETNODEFLAG
  iX
  NODENEXTSTEP.
This feels to me like light jogging down a hillside in the
Sunlight after a light lunch including coffee on the
hilltop, compared to earlier chapters. We'll get through
all the steps and sweeps by cruising through the list of
what is to be done and translating it to our lovely
formalism G15 PMN.
  Time to begin on our sweet sweeps. Through many cycles,
these 'try out' the various elementary actions on the copy
image--ie, they do a sort of 'simulated action'--and the
best pmille match is stored in luxury field# 42. As with
steps, the high level is very simple also because it
doesn't bother to update the count number--yes it adds 1
to it, but it doesn't store it back. It adds one because
the first value of a typical short array is--unless we
define it otherwise--the position# 1. The sweep number, at
position# 40, was just reset.
  Here, you'll see that the warp to the foundry is copied
by one of the three one-letter functions I made in the
core PMN, F. We can think of F as 'forge a copy', W as
symbolic in letter-form to a sort of switch, while D is
symbolic for a sort of bridge and rhymes a bit with with
that word. These three have their roots in that which
inspired a key aspect of G15 PMN, namely Forth. Their



naming here so that they stand out is because of their
essentiality and, we might say, "truth" (in a stack-
oriented context). There are three variables in G15 CPU
code that I shaped to stand out in a vaguely analogous
way--a group of G15 functions are connected to them--
the THIN A, THIN B, and THIN C, sometimes abbreviated to
THA etc. You can see a list of G15 function by, in the
edit mode of the CAR menu for G15 a click on CTR-Y and
browse with PgDn there.
  This is a design intuition I always have used: that the
highest design and beauty involves blending aspects of
three higher principles or personalities, which is of
course the three muses. Here, in PMN, the somewhat
'coquette' shapely function and form of W suggests the
muse Lisa, known for her (righteous and well-deserved)
vanity. The leap of D is resonant with the kick of the
pretty-footed warrior muse Athina. The ever-abiding
flawless presence of Helena resonates with the ease of F.
  HPTASKSTEP3=
  |IN:FNWARP
  F
  SX
  |GET SWEEP#:
  43
  iX
  WK
  UP
  HPTSWEEPS
  AY
  PF.
The first sweep--here I follow the list of the sweeps as
discussed deep into the chapter 'ABOUT LEVEL TEN MILLION',
resets the values used by sweeps; the second of the sweeps
is part of the repeated sweeps, a sort of loop-through-
the-cycles, to locate the best-performing subtask. But
before we go on, a little pause in the coding makes for a
more holistic book on thinking ;)

*INTERMEZZO: LETTING THE SUBCONSCIOUS BE PART OF THE 
WORK*
One of the many objections I have to too-strict
'measurements' over how we humans perform in a work
situation--a issue of much discontent in the (over-)
technologized societies we have at present, where
employers appear to increasingly demand efficiency in
'every minute' and use machines and unethically made
program to enforce this--is that the most brilliant forms
of human natural intelligence emerge out of the
subconcious and this takes time; a time that may appear to
be leisure-time but which is everything-but.
  So, after dabbling into an intellectual question, the
person may go on to having sex, resting, doing some yoga,
browsing some news--everything except working--and upon
returning to the work at hand, a solution may present
itself as if by magic. Yet that which we--though the term
isn't exact--can call the 'subconscious' was not only hard
at work all the time, but could not have been as hard on
the work if it had not been for the sex/rest/yoga/whatever
--for it uses as fuel for its work other bodily and mental
rhythms than that which appear to be 'efficient' in an
external sense relative to the task at hand.
  And in this consideration, sleep is not just sleep: it



is also work, indeed possibly exceedingly hard work,--and
what we may carelessly call 'dreams' may, sometimes, be at
the core of this very real and hard work. Along the same
lines, a headache may not just be a headache but a way the
body and its brain organizes some of the subconscious work
--and indeed the cure of the headache, properly, may be
to divert from the most obvious task at hand--indeed also
deviate from the task the employer has given to the
employee--and unfold a different type of activity, perhaps
an intellectual one but without direct connection to the
designed task ahead.
  So it is not that 'we must let in the irrational' in
order to have a better society and better lives, but more
that the rational is not just what it appears and what may
at first hand appear irrational may not just be irrational
--just as it may not be simple always to tell what is
simple, nor may it be obvious at first to say that which
appears obvious later on.

*MAKING ROBOTIC FCM PROGRAM:LEVEL TEN MILLION, SWEEP# 
1*
In a funny way, programming requires that you have your
life in order. For doing good programming requires a
great presence of mind. Lots of things must be kept
lingering on the threshold of conscious thought, and
swiftly recalled as needed, and this presupposes a high
degree of coherence of mind in those hours you program.
To get that coherence of mind, deep uncertainties about
how your life and your projects are unfolding must be
met successfully and transcended.
  And for any programming project of magnitude, while
you're in the midst of it, we're not talking of "Let's
give it five or ten minutes now and get some progress."
Even given a pause of no more than, say, fourteen days,
it can easily take an hour, or two, or three, just to get
into touch with all the facts of the present programming
so as to move it forward. It's like a giant engine with
lots of dials and levers and knobs and they must all be
adjusted carefully, and oil applied, and checked and
double-checked. Only then the ignition switch is set to
ON and the roar of the engine starts and liquid gold is
generated, the liquid gold of thinking.

As for the programming of the high priority task in its
step 3, which has substeps or 'sweeps' as we call them,
this is about finding out which, if any, 'elementary
action' on the matrix pushes it at least a little bit in
the direction of one of the fourteen match images used in
the pattern matching in the approach to FCM we take in
this volume.
  The first sweep could have been done by enlarging a step
--since it's only about initializing and we really do not
need the whole FCM TRANSLUCENT loop to go through all the
levels once more before the next sweep. But while it's
okay to be aware such possible improvements in speed, this
isn't a significant delay and it's OK also to not squeeze
the last drop out of the lemon that the computer is in
your programming. Sweep number 1 sets the number of the
elementary action to the first one; it is stored in
luxury value# 44. Note that this number is 15, not 1,
because it refers to the number of the link, and just



before the 10 elementary actions comes the links to the 14
match nodes. Luxury value# 41 is the winning elementary
action so far; we can initially just set that, too, to 15.
Its pmille match value is stored in # 42 and this we set
to BASIS. And we already have # 43 with the best match
pmille for the main image. The repeated copying-over of
main image to copy image prior to each elementary action
having a go on it, is done in sweep# 2.
  We can call the functions doing the sweeps for anything
we like as long as we fit their warps into the slots of
the HPTSWEEPS. We have already suggested 'HPTSWEEP1'. So:
  HPTSWEEP1=
  |IN:FNWARP
  SX
  15
  44
  iX
  KW
  15
  41
  iX
  KW
  BASIS
  42
  iX
  KW
  iX
  NODENEXTSWEEP.
How to put the function, via FF, into the array of sweeps
we have already outlined before, so we won't repeat it
here. [See chapter ..MORE FUNCS AT LEVEL 10 MILL.]

For the sake of being 'honest to the process' in this
explorative work on thinking as such, let me add that
prior to writing this chapter I had some vague senses of
there being some possible confusions in the code in the
earlier chapters, so it took time building the sense of
overview before I actually did some new coding. And in
building this sense--by reading back and forth and using
much the search function in the B9edit text editor--I did
find indeed a couple of things to improve and indeed one
thing to correct in the code. This is to re-iterate the
point that feeling and thinking goes together; that the
quest for clarity of feeling may involve using some
features of feeling as a 'radar' to pick out something
that ought to be fixed; that feeling may emerge from a
thinking that, even if the conscious level of thought for
days have had plenty of other things to focus on, in fact
has algorithmic clarity and exact relationship to detail.

*MAKING ROBOTIC FCM PROGRAM:LEVEL TEN MILLION SWEEP# 
2*
For the nth time, I begin a chapter level 10 mill "DONE"--
only to rename it soon enough--because the complexity of
that level--let's say the "most simple complexity that can
do the job"--or "adequate complexity"--has in it a bunch
of necessary nuances that weren't that easy to pick out
'from a distance'. Writing a program while writing a book
means that such an under-estimation of complexity affects
the layout of the book--it keeps on getting larger than
the earlier parts of the book seem to presuppose. It's



tempting to just 'get the program done' and then write the
book to its completion but then the thinking behind the
program lines would get inadequately documented. Yet I see
that the character count of this volume vastly exceeds the
previous volumes. Be it as it may, it has been a lot of
novel works on my part between this volume and all the
previous ones; so much so that the book is almost written
in a new life context and part of the process of thinking
is to bring what is relevant of the context onboard the
ship, so to say.
  Of some interest here, in the philosophy of thinking--
"pure thinking",--we might say, is that the experience of
making a program when one knows a programming language
structure like G15 PMN, and one has a visualized, meaning-
ful goal, means that a landscape almost by a form of
'fractal magic' unfolds before oneself, with hillsides and
mountainsides and sleek mountain rivers and some beaches,
and, by the rules and tokens of the language, one must
take one step at a time. One can glimpse the distant
mountain but to get there one must have a good backpack
and go through these other places. And in going through
these other places, we may find, as Gandalf, Aragorn,
Bilbo, Frodo and the others in J.R.R.Tolkien's tales, that
there is much to be experienced and errands to be
successfully managed. John R. Reuel Tolkien, in that
sense, was a master programmer, though born in the 19th
century, half a century before the first intimations of
computer programming in humanity--first perhaps through
the works of Kurt Goedel, then most obviously by the works
of Alan Turing.
  And, by the same token, can we not imagine that the
process of creation--Alfred North Whitehead spoke of God
as "the Creative"--takes place, in the sense of George
Berkeley's idea that the world exists by virtue of it
existing in the mind of God--in exactly such a meeting-
point between a goal and a formal language? Attention
flows in towards the goal, through the formal language,
and a landscape of great beauty unfolds. In going into it,
even as one has oneself shaped the goal, and knows the
language intimately, there are surprises, there are tasks,
it is engaging. Feelings come in and--as we have touched
on some places in this and in the previous volumes in this
series--these feelings are not merely by-products of the
thinking but can be informative essences as well as forces
in the thinking.
  And let there be no doubt that I know G15 PMN well:
while I have to constantely look up definitions--and
sometimes forget for a while that a definition does exist,
such as for permille, so I code it afresh--the whole
shebang is my doing. And yet the shaping of a program is a
giant exploration process. In programming, the old adage--
which I believe I made myself--and which can be misused so
as to justify laziness--seem to apply a lot: 'walk where
it's effortless to walk from where you're standing, and
which is relevant to where you're headed.'

As for walking on with our program, we have some sweeps to
do. Sweep 2 and onwards are performed on the principle
that there is still more to do in this 'loop' [I quote the
word for the real loop is TRANSLUCENT; here we merely let
the sweeps be updated and the counter be reset until done
with all the elementary actions.] The last of the sweeps
checks whether there is still more to be done, and, in
such a case, puts the sweep counter back to this, sweep# 2
again.



  Here, the main image is copied using the typical copy-
routine in G15 PMN called FW, over to the copy image, and
the present link number to the elementary action is
offered to function SOFTACTIVE defined in our chapter
'LEVEL TEN MILLION FUNCS'. SOFTACTIVE expects the warp to
the present foundry on top of the stack. Luxury value# 44
has the link#.
  HPTSWEEP2=
  |IN:FNWARP
  SX
  44
  iX
  WK
  iX
  SOFTACTIVE
Alright, let's do the FW part also. It has 'from warp',
'to warp', and count. As a comfortable and rich rule, we
tend to define matrices so that they have at least one row
extra, in addition to a bunch of extra bytes right before
it when we do the WWYYMATRIX. The FW is superbly fast and
so, in order not to focus too intently on whether the
matrix starts at row 0 or 1, one might as well include an
extra row in the copying-over process.
  MATCH1IMG
  LK
  COPYIMAGE
  LK
  112
  161
  MM
  FW
  iX
  NODENEXTSWEEP.

It takes a flicker of a flicker of a second to do the MM
otherwise we would have 'hard-coded' in the result of that
multiplication--somewhich which makes sense if the MM is
is inside a loop going many hundreds of thousands of times
but not when it's about to be performed fifteen times. The
number '161' is simply 160, the number of rows, plus one.

*MAKING ROBOTIC FCM PROGRAM:LEVEL 10 MILLION DONE!*
As said in the intro--whether or not contradicted in some
of the writing process between it and here--by this book,
we complete most of the app--at least 800 permille. Since
the app should be available at g15pmn.com, ie, the app#
1005769, you can use this book as documentation to get to
grips with the program and whenever the program has some
of its lines changed compared to here, this writing-
thinking that created the program, it is because in the
'dialogue' with the noble G15 PMN PC it was apparent that
a change had to be done to get the program to be done.
But as you notice, the mere fact of knowing a formal
language well is enough that this dialogue goes on inside
you as you sketch the program. Getting it to run on the
computer is almost trivial; and yet the computer is
essential in driving forth this form of consciousness in
humanity that the programmers represent. And so it is my
intuition, and belief, that the intuitively-designed G15
PMN can be the core of the formal education for all kids
and up, which, together with the mind-dance of brilliant
English as in P.G.Wodehouse writings, enlivens the mind
for a joyous life.



The app won't have many changes from this book. Elementary
actions will have an algorithm that does something like
this: divide the image matrix up in equal portions. Let
each elementary action be swapping one part of that
portion with another--rather like a jigsaw puzzle with
large parts, in which one part is taken out and inserted
at another place.
  If the construted image have been made with a knowing
that this is about the type of action that will be applied
in order to create more order in it, it should be possible
for the human interactor with app# 1005769 to see order
increase  with each "Go, Improve It!" action through a
click on the keyboard. The FCM network will do as much as
it can with each image. And all the features of a full
robotic network have been given a vast type of 'Hi world!'
go-through for the budding advanced G15 PMN programmer.

  Onwards to sweep# 3. This is the soft-activation of the
whole range of fourteen match images, and with the setting
that they work on the copy image.
  Before that, let's make a small comparison between the
notion of doing NODENEXTSTEP and NODENEXTSWEEP, in a
function that is called from a node which is to do several
things in succession, and possibly with repetition--and
the notion of doing such as LL .. LO loops -- or just
calling many functions after one another.
  The whole mesmerizing difference between robotics
programming in a node network and more in-computer
programs with a normal, 'classical' style of loops is that
of the dimension of duration--put simply, time. The
algorithms that runs robotic hardware has an 'obligation'
to stay in touch with that hardware and not just rush on.
So time comes in, we might say, and sweetly messes up the
prestine order of algorithmic computer programming. Not
only is there a waiting action before such-and-such move
of the robot arm or whatever, but also there is the
constant update of other functions 'here and there' in RAM
--functions which add up to the sense that, while in
principle there is one sequential action sequence, on the
human experience level and for all practical purposes from
the 'perspective' of the robotic hardware--there is a kind
of "parallelism". We gain next to nothing having an actual
parallelism at the CPU level, ie by having more than one
CPU, but the perspective of parallelism makes sense when
analyzed in terms of (desi)seconds rather than, say,
microseconds.
  In algorithmic terms, this is what I like--whether it's
precise or not relative to classical computer jargon--to
call 'polling'. We might say, here in FCM, in the 3rd
Foundation G15 PMN, the TRANSLUCENT loop is 'polling' over
a number of functions, organized by level numbers.
  And so which functions that do something and which are
waiting on others are decided by a flag they have here,
which we call 'soft activation'; and those that do
something, may turn on and off the soft activation of
other functions (ie, functions belonging to other nodes)
in our FCM computational node network.
  The NODENEXTSTEP is then a way to organize the doing of
several things, one at a time--and letting the TRANSLUCENT
go around polling all sorts of other activities that may
go on in the network--and so also for NODENEXTSWEEP. When,
in the case of sweeps--considered here as 'sub-steps'
under one step--are complete, the last sweep should call
'NODENEXTSTEP' in order to signal that the sweeps are
complete.



  In an LL .. LO style of loop, the counting as for cycles
happens in the background--that is to say, the G15 code
underlaying PMN does the update of the i1 counter and the
check of whether enough steps have been performed, at the
LL point and the LO point. The LL .. LO style is snappier,
but the NODENEXTSTEP and NODENEXTSWEEP incorporates a
robotic sense of 'there being possibly many motors and
several cameras and so on being active rather at once' and
so is psychologically experienced as more 'organic' and
more resonant with the 'sluggishness of the material
world' in which things are not just pure abstract
algorithms but also motors which occasionally need oil and
which may or may not squeek and which may or may not have
enough horse power to lift the darn cup or whatever it
is ;)
  So for instance, when the robotic has successfully moved
its arm or something, there is a NODENEXTSWEEP or the like
that then calls on an analysis of what is coming of data
from a relevant camera to see how well the arm is holding
on to that cup. These little collaborations are all about
having a good resonance between, on the one hand, the
formal abstract computational node network, and, on the
other hand, the robotic machinery 'out there'.

Let me also add, it's something about the explicit goal-
setting process that must be in negotation to what we can
call the deeper and more encompassing goals associated
with the activity--in this case this book, and the book
series. A goal--'to get the program done'--may exist in
the mind simultaneously with the feeling that something
about the programming, and thereby thinking, process, has
been left unsaid. And this sense may prevent the degree to
which the thinker, the programmer, has an ease with which
to engage with the programming, because the sense has in
it core information that can be unfolded given that one
gives it time and space and energy.
  This is one of the chief reasons why I don't use
algorithms to structure my days and months, but have a
notebook-approach to it. There are actions, such as car-
driving, that requires full attention to the task at hand
with no wavering of mind in order for it to be done with
the safety that it deserves and requires. But when we are
working out essays on the art of thinking as such, it is
'against the law' to become 'of an instrumental mind-set'
and ignore quiet perceptive feelings of unsaid things in
order to reach a concrete milestone.
  And indeed in much of life, this is required, and in all
of art, and much of life is art.

There! The next sweep uses 'From/To Soft Activation 5',
or FTSOFTACT5, the number 5 indicating the the method of
activation is to set the activation flag to 5, rather
than 1, to indicate to the 14 match image nodes that the
copy image is in focus. FTSOFTACT, rather than FTSOFTACT5,
was used in HPTASKSTEP1. Here we will have repeated use of
FTSOFTACT5 until all the elementary actions have been
tested and the best match permille number recorded, along-
side which elementary action that gave this number.



  HPTSWEEP3=
  |IN:FNWARP
  SX
  1
  14
  iX
  FTSOFTACT5
  iX
  NODENEXTSWEEP.

Next: Here, [1] get the best-performing pmille--we already
have a routine for this, SOFTACTWIN; [2] compare this
number with the number already recorded--that's in # 42;
[3] in case it's better, store the new number back there
and also note which elementary action that delivered this
improvement in # 41.
  HPSWEEP4=
  |IN:FNWARP
  TX
  1
  14
  JX
  SOFTACTWIN
  S9
That is to say, the i9 contains the match number for this
elementary action. Let's see if it is better. [Note that
we do not of course say that the computer should 'see'
whether it is better, nor did we instruct the computer to
'note' the value. Rather, we as humans, real thinkers,
real programmers, we are the ones doing the noting and
the thinking and while doing this, we also program the
computer to do something that we might say illustrates a
formal aspect of this--not transferring psychological
terms to the machine.]
  JX
  42
  WK
  i9
  GE
  SE
  EX
Note that in typing it into my specially designed 'native'
G15 programming font--also called RBOTFNT or RobotFont --
using the two-column approach [which contributes to a
sense of 'conversation within the card' in how it is
psychologically read], the use of blank lines is a
recommended programming policy around 'jump points' such
as SE and D2.
  The routine goes on in case there's reason to update.
So let's update:
  i9
  42
  JX
  KW
  44
  JX
  WK
  41
  JX
  KW
  JX
  NODENEXTSWEEP.

  The following sweep could, as I believe I've already
hinted on somewhere, be written as an extension of the
previous sweep--for there is no need to wait to do the



forthcoming update of the elementary action number.
However the sense of leisure and good luxury that pervades
G15 PMN programming must also be part of its essential FCM
programming. Why pack two sweeps into one, when it looks
good and has an ease to let it be two of them? True, the
TRANSLUCENT loop will work on polling all the other nodes
between sweep# 4 and the next, # 5, but what of that?
Polling has a nice feel to it even if it's unnecessary
between these two sweeps as this is the controlling node
in this case and we know the score. However, in another,
expanded case where the first step of the programming
process may be much a copy-paste process of this program,
it may be a delight to see the sweeps each being small, as
some extensions may be on the to-do list to implement here
and there in the sweeps--possibly some extensions that
require a polling, not just as an option, but as a
necessity. Anyway, here's the completing sweep, # 5. This
is what we want it to do:
  It increases the elementary action number by 1, and as
it goes in our case from 15 to 25, there being 10 such
actions or subtasks, we check whether it it exceeds 25.
In such a case, it's about time to do NODENEXTSTEP. The
next STEP does the 'winning' subtask directly on the main
image and stores it back to disk--or does nothing in case
the improvement is too marginal. And there is a step that
gives control back to the G15 PMN FCM Spreadsheet, or GPS
as we also call it, where the interactor--which may be
you!--watch the results, the image gradually gets more and
more orderly in the sense of matching up to one of the 14
images until, by the 10 elementary actions as here
defined, there isn't any more these can done given the
input that the interactor, you, provided. The input you
provided could be something like a light messing up in GEM
of one of the 14 elementary images.
  Whether or not we have described clearly in such as step
1 how to get the main image matrix properly updated by
copying in that which is on disk, as given to GPS, I will
have to look at when I program the app itself. The app
contains the corrections and additions necessary to get
this program to run on the computer.
  HPSWEEP5=
  |IN:FNWARP
  TX
  44
  JX
  WK
  25
  LT
  D2
  NODENEXTSTEP
  EX
At this point, the routine continues given that not all
in the series 10 .. 25 have been checked as yet. [The
reason why a sweep can call 'NODENEXTSTEP' without further
ado--ie, without calling for an exit of the sweeps first--
is that the routine that 'pulsates' the sweep are inside
of one step, which is also why we call the sweeps for
'substeps'. And as soon as the node exits, with the
updated step number, there will be no more calling on the
sweeps before again, in this case, step 3 is reached with
the resetting of the variables used by the sweeps. It will
go straight and without a problem to the next step.]
  The sweep, having more elementary actions to call on,
updates the link number:



  1
  44
  JX
  KU
And changes sweep number to # 2 and in effect creating a
loop:
  2
  40
  JX
  KW
  JX
  NODENEXTSWEEP.
Hereby, we have the sweeps for step 3 done!
  And that also, of course, completes step 3. We have
earlier described five steps. The fourth step compares the
pmille the main image got earlier on, at luxury value # 43
with the luxury value # 42, the pmille produced after the
"probing-action" found most successful by the sweeps, had
done its job. In case the # 42 is significantly better
than # 43--just how much is something to be tuned while
doing the program--the elementary action is soft activated
again--but to do the job on the main image.
  One more cycle, and we're at step number 5, which of
course is to set focus over to the GPS aspect of the G15
PMN FCM computational network, or networks, so that the
interactor can view the result.
  Now it should be fairly straight-forward to program the
app. The completing steps, and the elementary actions at
the highest level numbers, are after all very easy.

*YOUR OWN DANCE, YOUR OWN EXERCISES, YOUR OWN SKILLS*
We must all fight stupification of humanity. Robots are
here to help us do things that are too stupid for us to do
and computers are not here to outwit us. So computer
development must be kept in check, while mind-powers of us
all should constantly be honed and fine-tuned. Just as you
must improvise in your own dance skills, and bodily
exercises, every day, so also must you practise two-hand
typing on big keyboards in front of PCs and learn to dance
in thought, be it just some minutes, every day, using the
calm meditative focus of the green text editor and
programming editor in front of you to assist you to
sharpen thought, and to help you be aware of your own
thoughts by expressing them. This awareness means that you
are uphelding a dialogue with yourself.
  From thereon you can be social in truly meaningful ways,
and build affluence and experience in sex, learning of
the importance of beauty, also spiritually--always more
learning--and all this, including the wealth, will have
meaning.


