
1

2

Art of Thinking, vol. II

G15 PMN PROGRAMMING FOR TEENS

Aristo Tacoma

3

///COPYRIGHT-INFORMATION////////////
Title: Art of Thinking, vol 2 of 5:
G15 PMN Programming for Teens
Author: Aristo Tacoma
Publication year/place: 2019, Oslo,
Norway. Publisher: Yoga4d:VRGM.
This is published on paper, and also
available for free digitally, at
avenuege.com/library. This volume is
number 2 in the five-volume series
entitled Art of Thinking. It can be
redistributed for free in any
respectable context, where the aim
involves encouraging G15 PMN
programming. For more information
about copyright and the five-volume
set, consult volume 1, which is
also at avenuege.com/library.
ISBN 978-82-93128-03-8
Published by the Avenuege Library,
Yoga4d von Reusch Gamemakers, Oslo,
Norway. Print: www.print-shop.no.
////////////////////////////////////

4

INTENDED AUDIENCE
Grown-ups living life, using their minds also. Those who
are living sexually in a meditative way, wishing to think
about technology, programming and philosophy at the same
time. "G15 PMN for Teens" is Volume II in the Art of
Thinking series, a series devoted to thinking in its full
and holistic format, not merely as a dry logical course,
but as a biologically, organically pulsating phenomenon
in which the rhythms of our genitals ties up with rhythms
of our brains and minds. If this is too much for you,
stick to Volume I until you have matured: it will teach
you the technical fundamentals here engaged at a higher
and more tantric and spiritual level.
 Chapter 4 has full source-code and some comments for FCM
which is part of G15 PMN Third Foundation standard. FCM is
used for pattern matching in Volume 3, and in other forms
robot and/or matrix programming, where the limits of what
algorithms can do are touched on. Chapters 1 to 3 are
juicy enough to make up for the driness of chapter 4, I
should hope :>

5

FOREWORD
Perhaps you haven't cared all that much for programming
before now, and now, you care for sex. I am not going to
condemn that. You must find your own path. Sex can lead to
love, and love has its own intelligence.
 The high sense of ecstasy that sex can give is much
higher still if the mind is not in a mess, but rather has
harmony, love, clarity, tranquility, order. It is here
programming can help: it's like a shower or a bath for
the mind; one of many approaches to keep the mind bright.
 Surely, sex is not just something that goes on between
the legs, or in this or that part of the body. It is
about being whole, feeling all life as an unbroken,
dancing, musical flow, a unity, a throbbing unity with
beauty, and with oneself. Obviously your mind must be
clear, whole, having good order for sex to be full.
 We are going to assume some but not much understanding
of what was laid out in Volume 1, and you can always look
into it to clarify that which is said here with little
explanation. We will repeat some of the themes, such as
the golden ratio, but in somewhat fresh ways: and we
will keep on returning to the sense in which sexuality
can be a living, integral part of great thinking and
programming.
 It is a question of talking up certain perceptions of
the world and the machine and its G15 PMN language so that
the sensuality of it emerges in our feeling, rather as how
a sense of the world can be forged through a poem.
 The approach of sexuality to doing intelligent work is
natural, for those who are lucky enough to handle the
intensity of sexuality. When you spend much time in some

6

meditative, creative state of being near-orgasm, while
having concrete plans vaguely in mind, these plans sort
themselves out. Anything done by this writer has been
prepared in this way--including the shape of the G15 PMN
language: even its innermost code, just look at how some
of the core two-letter commands in PMN are programmed in
the underlaying G15 assembly--a theme which we most gently
touch on in this book. Several topics hinted at here are
explored in some depth in upcoming books in this series.

A PRACTICAL NOTE
Anything quickly said here about programming is likely
more carefully said in volume 1, or else explained in
some of the documentation and/or example programs that go
along with the G15 PMN programming language.
 The structuring of the chapters are different in volume
1 because, up to ch. 3, content is interwoven and less
sequential. Also, volume 1 was written also so that it can
provide an easy look-up of central G15 PMN features.
 And let me repeat also here: if you are reading this to
actually learn more programming, you absolutely must have
some background in G15 PMN essentials first--eg through
Volume 1 in this 5-volume series. But you can also
approach this in an eclectic sense where you pick out
passages that make sense to you for instance if you are
interested in the philosophy of sex and various myths we
can build over how the universe came to be how it is.

7

ROOM FOR OWN NOTES (and your own index)

8

9

10

CHAPTER 1

1.1
Sex, in its highest form, is getting turned on and thrown
into joy through some form of beauty. Beauty is an
infinite concept. But part of it is that the proportions--
such as the proportions of the lips--create a pleasant
tingling inside you, for you feel that they are
harmonious.
 To explore harmony, we are creating insights into beauty
--and that in turn can make our sexuality deeper and more
intense.
 When we explore harmony in music, it is often found
that when wavelengths add up neatly, they sound more
pleasant, more harmonious. The cycles can be counted: when
you make a pure sound somehow, and then go twice as high
in pitch, the higher pitch has two wave cycles for each
wave cycle of the lower pitch. These two sound almost like
the same tone.
 A more complicated harmony, but very pleasant, is when
the relationship of the waves are more like 2 to 3 rather
than merely a doubling of them. We can also have 3 to 5,
and 5 to 8. And it is possible to make drawings with these
lengths. Much happens in our minds when we meet such
ratios, or proportions. For instance, as soon as a girl
with slender, fairly long legs in a miniskirt takes on
high heels, suddenly the length of the legs compared to
the upper body is much more a question of 3 to 2 rather
than 1 to 1. It depends where you focus--hips, navel, or
between the legs; and on how high heels there are; and how
long-legged the girl is compared to her torso; and other
factos like how wide her hips are also affect the seeing
of beauty.
 These numbers can be produced with no other means than
addition. These numbers of harmony are also called the

11

Fiobnacci numbers (more or less after the name of a
early thinker on the subject).
 The numbers do not say even nearly all there are to say
about beauty. But to keep thinking about them, once in a
while, can make all you do more fun and more beautiful and
it can enhance your sense of sexuality and glamour to be
aware of them. Let's make them.

1.2
Start up G15 PMN, its Third Foundation (which is the
normal way of starting up G15 PMN when we do programming,
and sometimes we only rarely point out). Type in this,
where we use the symbol <LN> to mean the lineshift button,
the big 'ENTER' button on the right side of the keyboard.
 1 <LN> 1 <LN> ad <LN> nn <LN>
When you type in this, the PC tells you '2'. It is simple:
you give it 1, then 1, then tell it to 'ad' (ie, add) up
the two numbers, then show the result. Be patient in
going through with this, and we'll make the machine to it
more elegantly on its own after we've experimented a
little.
 1 <LN> 2 <LN> ad <LN> nn <LN>
Here, the PC says '3'. We added 1 to the result we just
had, namely two. Our last two numbers are 2 and 3. So:
 2 <LN> 3 <LN> ad <LN> nn <LN>
We now have got 5. That number came up in the former
paragraph. The most recent two numbers are 3 and 5. So:
 3 <LN> 5 <LN> ad <LN> nn <LN>
We get to 8 (also a number in the last paragraph).
 We can go on and the numbers will raise rather quickly,
and go above the typical 2 billion level of the PC. The PC
that properly runs G15 PMN is called "32-bit", and this is
the ideal bit-size for a good programming machine, what we
also called a "human thought friendly computer" and a PC
that allows what we call "first-hand programming". (If we
have fewer than 32 bits, on a digital computer that means
too many restrictions; but if we go beyond 32 bits, the

12

numbers and the data sizes are so huge that it leads to a
style of programming which discourages human thought.)
 There are many ways in which we can get the computer to
do the above type of thing--'add the two most recent
numbers and show the result'--and let us figure out one
way. That's when we go from mere calculation into
programming.

1.3
As volume 1 also will tell you, the letters W, D and F do
simple things on the stack of numbers inside the memory of
the PC. So we if type in eg 3 /// 5 then type W it will
switch around these two numbers (W=sWitch). Or type D and
it will sort of bridge the 3 over the 5 so it is as if you
have typed in 3 /// 5 /// 3 (D=briDge). Or type F and it
will make or 'forge' a new copy of the topmost item on
stack, eg if you type in 3 /// 5 /// F it will be as if
you typed in 3 /// 5 /// 5 (F=Forge). Let us put these
to good use to add up the last two numbers. I experimented
before I started this paragraph, and found this to work--
perhaps you want to check for yourself (either by drawing
it up somehow, or by typing it on the computer):
(we use small letters to program the PC, the big letters
sometimes in a text like above is just to make them stand
out)
 1 /// 2 /// w /// d /// ad /// f /// nn
This switches the two around, copies the second on top of
stack, ads them, and shows them via 'NN'. The reason for a
'F' before the 'NN' is to keep the result on stack: 'NN'
chews up one item on stack--a number--and shows that
number to us at the same time. To counter that chewing-up,
the F does the job of protecting a copy of the number.
 Normally, when you start up the 3rd foundation, if you
type F /// NN /// it will say '123456'. That typically
means there is nothing on the stack. Now, if you type
F /// NN /// you will see that it shows the last result
once more. And because of all our maneuvers, there is one

13

more number underneath that last result. What we have on
stack is not '1' then '2' as we started with, but '2' then
'3'. If you go up a paragraph, you see our desired list of
numbers begin with just this: 1 2 3 5. Let us see if we
can simply type in much the same as above once more and
get the next number out, the '5':
 w /// d /// ad /// f /// nn
Voila! We get 5. And the next is supposed to be 8, and
that is in fact what we get. Hm. What we if we type in
something like this:
 abitfibo= ///
 w /// d /// ad /// f /// nn.
This little thingy--notice the '.' (dot) after the nn,
and notice also the '=' after the new word 'abitfibo'--
which we call 'a bit fibo' (without the blanks) is that
little efficient series of letters we worked on just
above. How about repeating it a dozen times? Something
like this:
 morefibo= /// 1 /// 2 ///
 ll:12 /// abitfibo /// lo.
The two letters LL and a colon, LL:, is like 'let's have a
loop (ie, repetition). They go pairwise together with LO,
playfully what we can think of as, 'the LOop ends here'.
We give 1 and 2 to the stack as start numbers for our
'abitfibo'. And the new word 'morefibo' should give it a
run a dozen times. As writer of this book, I hasten to try
if I got this idea right: the PC will tell.
 The PC confirmed it. It gave numbers up to 610,
including, on its path, 233 and 377. A little experiment-
ion, aided by memory of previous experiments, showed that
this particular routine can do up to 43 loops, rather than
just 12, without exceeding the limit of about 2 billion.
At 44 loops, the numbers start getting funny--signed, for
one thing.

1.4
Sex is not just orgasm: it may be much more orgasm before

14

the orgasm, so to speak. Multiple orgasms require each
great energy, great stamina, great bodily hormones, to be
really pleasant, so that they are not merely physical,
physiological reactions of the body, but something you are
participating in fully, in the mind. And sometimes, the
sense of multiple orgasms before the first major orgasm
can be ecstatic at the mind-level to an extreme degree
exactly because the body is not going through its energy-
demanding cycles. In EEG terms, there is a build-up of
the hypnotic, joyous, deep-learning, intelligent alpha
waves, and similar such, just before orgasm.
 This sort of EEG brain wave tends to go together with a
reduction of pain and anxiety and such. It literally works
to reduce pain to be in the pre-orgasmic state. Whatever
the body may have of issue--headache or this or that--as
long as its sexuality is intact, and one can get to the
pre-orgasmic state, pain is instantly reduced. But once
one goes through orgasm, there is what is called 'alpha
depletion', meaning that the pain in fact may be larger
than before the sexuality, eg for a minute or two.
 The golden ratio is one example of the type of pattern
that speaks of increased wholeness for the mind, and which
is spontaneously recognised, and felt, by any child, long
before there is any education in the golden ratio. Your
mind is every day completely new, when you have had enough
sleep and vitamins and so on: and this newness means that
just how and what it is that takes the mind to new
orgasmic heights--which can involve some forms of golden
ratios, in some ways--requires exploration. In this
exploration, it helps having a vivid mind, a creative mind
--and a mind educated to look for beauty, also through
porn-like photos and drawings and paintings.
 So I am saying that an education in art and design are
some of the things, alongside programming, that create
deeper and more fulfilling sexuality.
 Another thing that is of essential importance in
sexuality, for orgasms to come strongly and holistically,

15

is an attitude of 'being poly without jel'--put simply--
whichi is to say, 'being polyamorous with as little
jealousy as possible'. I am speaking of an attitude that
cannot be mechanically implemented in your life, but which
requires a constant exploration, learning, sensitivity--
also to other people's feelings, limits, orderliness,
messiness, potentials, levels--so that you get better and
better at it.
 An element here is to not take own jealousy as possible
but steer out of expressing it, and rather take time
argue in favour of the 'sexual democracy' of others, being
generous in your heart to other people's potential joys
with each other.
 And this also means being sensitive to how to avoid
creating either jealousy or frustration in others,
sometimes by avoiding to say things and sometimes by being
very forthright in saying things in a general and pleasant
way very early on (for instance, that you are dedicated to
being polyamorous and do not want to be 'locked into' the
approach of trying to pretend you can only love one other
person).
 Once you have worked with such themes in your own social
life, you are better at creating orgasms in others and
better at creating your own orgasms: because you are not
trying to steer the mentality of others during, or before,
or after sex, into any too narrow channel. You accept
closed eyes--assuming it's natural, healthy, holistic and
right for your partners to indulge in creative mental
porn while having sex with you; you accept it for yourself
also; you accept clothes on; you accept heavy petting as
an interesting alternative to sex, including but not
limited to those who are not yet fully up to full sex; you
accept the need for others to 'glorify' themselves a bit
and to 'glorify' also you a bit, as part of the sexuality
between you and them--and so also accept the need for
interesting music, surroundings, dance, talk, time, wine,
fetish actions, smiles, quietness, plans, and money. For

16

those who have too little money to be certain they can
make it through to next month, sex is often uninteresting;
those who have more than enough to make it for many months
can be generous and in that way 'remove the money issue'
from their potential sex companions--which has nothing to
do with reducing sex to money.
 All this flows from having a clear mind, clear insight
into all life, and such clarity is helped by programming
and by drawing and by exploring own orgasmic potentials
through tantric exercises, muscle-work of martial arts or
what this author calls 'stamash' type--and many more such
activities.
 The golden ratio fits with such a polyamorous, highly
sexed life where you approach beauty as if it is something
fairly religious, and find that you can be generous to
beauty because you see it as an objective force that ties
people together in bonds that are constantly swirling
around in a spiritual way, and not pre-determined in some
kind of 'dynasty'-fashion. A girl you thought plain can
show sudden superior beauty in an authentic, unedited
photo from a certain angle, and by being alive to sudden
and total recognition of this beauty, you can give her the
energy she deserves to give her an opportunity to express
it further. A motto here is 'beauty, rather than ego'.
 Programming, including golden ratio thinking, teaches
you to such rapid, we may say 'fluid' perception of beauty
--and this ties in with the idea of the ambro-sexual, the
fluid type of sexuality that, when more pervasive and
present, can be called pan-sexuality.
 How do you recognise consciously the golden ratio in
such as a photo? How do we sum up the fibo numbers above
in a sort of easy-to-remember formula? By this formula,
you can get a deeper, faster 'high' on seeing beauty: the
formula is summed up in this phrase: 618 permille. It is
easy to explain why.

1.5

17

Take the highest numbers we produced earlier in this
chapter, by adding the 'two most recent'. We went through
3, 5 and 8 and mentioned 233 and 377. It so happens that
all these numbers have roughly the same ratio: more or
less '618 permille'. Take anything and then measure half
of it--that's '500 permille', right? Permille meaning, of
course, 'per thousand'. 50 percent is another phrase,
where we speak of 'per hundred', but it may be more
suitable for good thinkers to engage in a thinking around
permille where the 20th century habit was to do percent
(a topic discussed elsewhere in writings by this author).
 Go a little up from 500 towards 600 permille. That's
about what we get if we look at 5 to 8. Try it:
 To check the relationship of two numbers, multiply the
first by a thousand, then do a division by 'di', or,
better still, by 'rd'--round division--and show the result
by 'nn':
 5000 /// 8 /// rd /// nn
This is not quite 618. But it isn't far from it. To get
618, just use 233 and 377 instead, or any of the higher
fibo numbers we made--any two beside one another will do:
 233000 /// 377 /// rd /// nn
Here we got it! 618. So we are lead into an astonishing
result, one of the wonders of numbers, one of perhaps
infinitely many numbers about numbers--but also a central
organising feature: Addition is forever entangled into the
number 618 when we are using the idea of permille.
 Using other words, predefined in the 3rd foundation of
G15 PMN, we can extract 618 permille of anything, such as
from the number 315, by a phrase like:
 315 /// 618 /// pm /// nn
Also predefined is 'golden', so you can just write
 315 /// golden /// nn
By the way, if you start with the smallest number and wish
to get up to the next one, you can use the idea of 1618
permille instead.
 Since 5 and 8 have very nearly the same relationship as

18

233 and 377, and since, when we experience each other in
sex and in daily living, we are always in movement, it is
often enough to be sure that as many features as possible
are having a 5 to 8 relationship, or slightly less than a
2 to 3 ratio: because while moving and dancing around, we
are bound to connect to the exact ratios in glimpses. And
just such glimpses trigger our sexual potentials.
 Find examples of this yourself: the golden ratio is
everywhere.

19

CHAPTER 2

2.1
In the previous chapter you got a blend of some rather
deep and advanced 'snapshots of concepts' of sex combined
with art and design ideas combined with bits of G15 PMN
programming. This blend requires a wakeful mind, and a
happy enough attitude about sex to be willing to read
about it while also thinking technically; it requires a
fairly good grasp of English; and a sense that numbers are
okay things--or beings--or whatever they are!--and worthy
of being thought about both analytically and sensually.
 Those who came to chapter 1 with a haste to get into a
particular topic, or very much centered on a particular
ideology of sex or of programming, or who just browsed
through it without foreknowledge of the style of thinking
we advocate in the Art of Thinking series as its most
eminent form, may well have got little out of that chapter
--except that either it, or themselves, appear a bit
"confused". To those, I strongly admonish: give it more
chances: read it when you really have quality time, a
great hot cup beside you of coffee or whatever you
favourite mentality stimulating brew may happen to be, and
when you have the 'smile in the body' that comes from it
having a memory inside it of some good sexuality, whether
it comes from 'partnering with yourself' or partnering
with others. When both you and the chapter come across as
coherent, it is time to proceed with this book!
 Since, on a computer, every pixel on the screen is drawn
through numbers--a number for the horisontal X coordinate,
a number for the vertical Y coordinate, and a number for
the tone--for G15 PMN that means a greentone--and since
every letter is represented by a number--called the ASCII

20

numbers, where eg 65='A'--and where every programming
command, such as 'AD' or 'RD' also are represented by
numbers, also called, in this case, 'warps', inside the
PC, then the big key to love programming is to love these
numbers--whole numbers--not meaninglessly high--possibly
signed numbers, from about minus two billion to about two
billion.
 By these numbers we can, if we absolutely have to, make
bigger numbers--by putting the numbers beside one another
and making suitable functions around them. This is done in
the robotic set of functions, which expand on the 3rd
foundation. These are socalled 32-bit numbers, called "32
bit" because it takes just 32 "bits" of 0s and 1s to cook
up the whole two-billion range (something you can check by
multiplying two possible bits with itself 31 times, ie,
2x2x2x2..x2, and leave one bit over for sign).
 When we think in terms of what this writer calls "the
super-model theory", we can argue that the world of beings
and things as we experience the world through our senses,
is in many ways a result of the intermingling of 32-bit
numbers--at deeper and deeper levels. At some level, we
must leave the domain of science and theory and at that
level our spirituality comes in. Between the living,
spiritual ground of the universe and the manifest universe
there is the domain of numbers in their sometimes more,
and sometimes less, algorithmic or machine-like movement.
An 'algorithm' is a function, just like we made a loop to
churn out fibo numbers in chapter 1. That is a machine-
like thing. Those who are socalled 'atheists' or God-
deniers, would say that there is nothing that is not
machine-like. The more advanced, and, in this writer's
opinion, correct view is that the machine-like works in
collaboration with a constant potential for something
non-algorithmic yet intelligent to work on it. The super-
model theory thus have pathways to the spiritual in a way
not seen in conventional 20th century dominant physics-
inspired worldviews.

21

 A worldview is always throbbing inside the human mind--
whether you're aware of it or not. And the worldview sets
the context for judging what seems logical and coherent,
and even interesting. Those who claim that they are not
really interested in worldviews are more precisely not
interested in changing their worldviews. Those who claim
that science is about studying phenomena without prejudice
from worldview merely try to pretend that they themselves
are not prejudiced: whereas in fact those who deny the
existence of worldview are usually those who are the most
heavily prejudiced. And science, at best, lies in its
constant aim to be unbiased and unprejudiced and evaluate
facts on a premise of pure perception and genuine
intuition, not just through the senses but through the
mind, and through feeling (not presuming a sharp division
here).
 To reach such pure perception the worldview must be of a
kind that is more rather than less correct, in the sense
of it being a trustworthy enough (even if rough) 'map' of
the universe, of existence. However the worldview is not
just one box or one sentence or one thing: it is a
combination of many features, including many assumptions.
If even any single one of these assumptions is totally
wrong, then it will have an effect of creating
contradictions and some incoherence in the overall
functioning of the mind. This we can call 'ego-noise' in
the human mind. And the art of thinking involves, first of
all, to recognise that the mind of the mortal human mind
is never perfect, and, secondly, that the worldview must
itself be made available for dialogue, attention, doubt
and exploration, and undergo changes so that it can
increase in coherence. In other words, the intelligent
human being, at live to the passion of conquering own ego
again and again, will raise to the challenge of asking
questions that goes against the foundations of own world-
view, and aiming at getting pure perceptions and good
intuitions about each and every feature of the world-view.

22

 Gradually, over time--for one cannot do it all at once--
more and more intelligence can come into the worldview:
but one mustn't do this with a perfectionist attitude, for
it will never be perfect in the sense of 'finished'.
 Also, one cannot do it the whole day long, for a living
human being must also do many other things than philosophy
every day, and if these other things are ignored, the mind
will get sluggish and not be able to do even philosophy.
So by necessity, the mind of a mortal human being is in a
state of evolution. It is a proposition by this writer
that the human mind in its core is soul, in the sense of
not being merely a structure of the brain and body, and
this is possible to articulate with great clarity when one
looks deeply into super-model theory. There can be much
more structure to something like a soul and a spirit level
than to the brain and the body, even though the brain has
a structure far greater than even that of the DNA molecule
which exists in every cell of the human being. The brain
has, as we know, billions and yet more billions of cells
of various kinds and these are interconnected in myriad
ways, and all this is living, changing, growing, pulsating
--and the coherent brain is able, this writer proposes, to
be a vehicle for something far, far beyond it and much
more intelligent than it and the true experiencer of
things. This is the soul-level and the spirit-level, to
use such classical spiritual words for it, though there
may be no classical spirituality that adequately talks
about these more subtle energy phenomena in a very
accurate way.
 The fact that little has been measured of such subtle
energies in conventional 20th century should not lead us
to assume that these levels, if they do exist, are in any
way lacking structure. It is typical for scientists to
imagine that what they haven't yet measured on is pretty
simple when all comes to all; and just as typical to see
that half a century later they happily declare that the
foregone generation of scientists were all wrong at that

23

point. This, for instance, has taken place when it comes
to the mapping of the human brain, from the early surmises
around the brain to the realization that the brain is a
veritable galaxy of complexity.
 In every worldview that I can think of, numbers are
given a role. And so, when we examine our most essential
viewpoints about numbers, and open up these viewpoints for
change, we are very likely opening up a portion of our
worldviews for change.
 Let us muse over this question, which relates to all our
foregoing discussions in this volume so far:
 * what is the relationship between sex and numbers?
 Put in other words, when we look at whole numbers--and
we're speaking of the 32-bit kind--can we, in some
meaningful philosophical way, get a sense of sexuality in
or through them?
 Let me add a viewpoint about golden ratios before we
proceed with this question. In the previous chapter, we
said, didn't we, that in the context of permille, 618 is a
lot of what the golden ratio is all about. This is a valid
statement, I feel: but some, especially those who are
influenced by 20th century thinking, where there was a
tendency to try to speak of 'infinite precision' where in
fact no such precision was available, may question this
statement. They may say that the golden ratio is not just
0.618 but rather it is something like "0.618..." in which
any number of additional digits should be added "for
precision". This is a way of talking that comes fast if
one has read 20th century literature on the distinction
between natural numbers and 'real numbers' in the wake of
Georg Cantor's attitudes on the subject, which suggested
that the 'set of natural numbers, though infinite, is
somehow smaller than the set of real or decimal numbers'.
 However that way of talking is just a way of talking.
What is correct to say, in the wake of the deductions of
essence numbers, after the reasoning around infinity, as
written about by this writer a number of places (also

24

inside the super-model theory text which is at the core
of the 3rd foundation), is that a number, a ratio, has a
precision that must be given together with the context of
meaning. The context of meaning of the golden ratio, when
we are speaking of permilles, is such that it is very
precise to say 618. If we speak of percent, it is 62.
There are other contexts available, and each has its own
whole number that can express a ratio most completely.
That something is 'complete' is in a sense greater than
that something is 'perfect' (a point made very clear by
C.G. Jung). For 'complete' involves a full unfoldment--
the root 'ple' is the same as in 'imply'. But 'perfect' is
a hope that something done is entirely finished in an
ideal sense, 'per fait' meaning that it is done--ie, sort
of closed. That which is complete is thus more a process.
 So a number like 618 is complete, in a permille context,
to speak of the golden ratio. The very idea of 'any
number of additional decimals' has an incoherence about it
--for 'any number' involves trying to treat infinity as if
it is a machine-like thing. So it really implies an
atheistic worldview--though most writers, when influenced
by 20th century thinking, would not quickly realize this.
 In short, then, whole numbers are psychologically
meaningful units when we have a good range of them, and
32 bit turns out to be the most meaningful of all, for the
full breath and width of programming. In order to create
more complex processes than that which can be created by
32-bit programming, it is a postulate of this writer that
it is best not to expand the programming language as much
as to expand the quantity of computers and create a
series of control programs that each have 32-bit as their
foundation. In sum, they can organize processes of a
complexity that transcends 32-bit, even if each 'unit of
meaning' is still associated closely with a 32-bit number.
(For those on a spiritual quest, one can imagine just
this underlying the 'super-models' in this vast manifest
universe of ours, and so we can visualize a vast number of

25

suble computers existing 'underneath' the material energy
operated on by God and his myriad subtle, powerful,
beautiful beings or angels--the muses.)
 So, then, what is the relationship between numbers and
sexuality? We see that the question is intensely
philosophical. It is hugely general, it is of a type that
can invite meditation and metaphysical inspiration and
intuition.
 As a working thought, while we explore it further in
infinitely many ways, I propose this:
 A number is a particular way to do sex.

2.2
Up until this point, perhaps an underlaying assumption has
been that the reader is so naturally high on sex that the
challenge is to sort of channel this energy into something
as apparently different as programming.
 What if a person is not high on sex? Not even when
trying? To be highly sexed is not a fixed state of mind
and body, but something that can come and then leave: and
however beneficial it is for certain types of works and
exercise and healing, it isn't easy to command forth when
it is not there. Now those who rarely experience not being
high on sex might blame those who are less highly sexed,
believing that they are resisting sex out of a sort of
consciously held prejudice or due to an illusion that sex
isn't a good thing or something.
 While some may indeed harbor foolish forms of illusions,
suggesting that sex and porn of some forms are 'bad', let
us rather explore the theme of sexedness with an open
mind. For it is a reality that a person who is normally
highly sexed, and who has every sort of meaningful good
belief about sex, can suddenly be depleted of sexual
energy for several hours, without obvious reason. However,
there are usually reasons, and by understanding these, we
can heal the sexual energy. Through healing it, we can get
a general re-motivation for many fruitful actions, which

26

can include programming. So let us explore it.
 If we simplify enormously, two things are required for
the sexual energy to be high in a human being: that there
is good bloodflow to the erogenous zones, especially to
the genitals between the legs, and that the brain is
pulsating with pleasant alpha waves in a harmonious way
that involves sexual visualisation. It makes no sense to
take any drug or medicine to stimulate the bloodflow
between the legs if the brain is not sexed up. When the
brain is sexed up, the subtler parts of the mind are also
called on.
 For a healthy person under normal circumstances, the
bloodflow is good, and especially given naturally
aphrodisiac supplements in daily diet beyond normal
vitamins and minerals, such as ginseng and maca.
 What may create a non-alpha state in brain is a
succession of experiences of apparently trivial
frustrations, so that these accumulate, giving a sense of
lack of connection between intention behind actions and
results of actions. For instance, given several hours with
hasty practical actions, if a number of these--even if
each action is of relatively small importance--lead to a
sense of 'resistance' in getting things done, the brain
wishes to sort out all this and get back into order. If
this wish is ignored, it is unlikely that the harmonious,
meditative, alpha-wave intensity will be triggered even
when the sexual stimuli are plentifold.
 It is this state that may be called 'depletion' or
'exhaustion', and it may be overridden only in a super-
ficial way by intake of chemical stimulants like caffeine.
Caffeine works well together with a harmonious, meditative
state, but if the harmony isn't there it gives a mental
wakefulness that doesn't reach deep. It may be enough for
more practical actions to be carried out, but it is
probably not enough for sexual energy to arise.
 What can be done in such an exhausted state? If the
person is normally harmonious, normally sexually energetic

27

it probably takes half an hour or an hour of some form of
meditation, in which each little frustration is looked on
from several angles and sorted out and, as far as
frustration goes, dissolved. As part of this, to imagine
or engage in some situation which provides good feedback,
a sense of personal worth and attractiveness, will be of
great value to restore the energy.
 The more deep and/or lasting the energy depletion is,
the more time and varied action may be required to restore
harmony. For a person who has experienced something that
has created a very sad or even sorrowful state, it may be
necessary to spend time on something entirely different
for a good while in order for the mind to build up a fresh
self-confidence from an activity in a different domain
altogether. This other domain should be more controllable,
more predictable, more certain in how it gives feedback.
For one who is good at programming, programming can work
as therapy quite remarkably, in such states.
 A complicated set of frustrations and perhaps sorrows
deep into the mind may need a rather complicated set of
healing actions, combined with much walking and much sleep
and so on, in order to be fully addressed--before the
sexual energy can be naturally elevated to a high level
again.
 Whatever it takes, it is important for a refreshing of
the highly sexed state that the brain is part of it: it is
a brain coherence, a brain wholeness, that is necessary,
not merely a physiologically good blood flow in the
tissues with all the proper hormones.

2.3
The paragraph numbered 2.2--the foregoing--of chapter 2 in
this volume is setting forth an understanding of what it
is to be depleted of energies, also sexual energies, and
also an understanding of what it takes to replenish them,
which includes meditation and time, and sometimes many
additional approaches. It is the premise of this writer's

28

approach to human thinking that mindfulness is essentially
tied up to sexual feelings, and these feelings of sex are
again tied up to beauty, and thereby harmony; and that
thinking must be as it were a wave on an ocean of such
feeling to be coherent and harmonious, and not just
logical in a narrow sense. Very few of the old, withered
socalled 'philosophers' and 'prophets' who are authors of
the most famous and influential texts on what it takes for
a human being to be rational and whole, in the past
millenia, have allotted this much importance to sexuality.
Most of them have talked about sexuality in a way that
reflects their decayed state--and not reflecting how they
probably themselves were taking their best decisions in
the youngest phases of their adulthood.
 As a result, the approaches to thinking in the 20th
century, both from the viewpoint of socalled "religion"
and from the viewpoint of socalled "science", rarely
lived up to a wholeness of understanding of the art of
thinking as fundamentally a sexual type of activity.
Instead, what set the agenda in both these leagues, as
well as in politics etc etc, was redhot condemnation of
sex and a hailing of incoherent standards of thinking.
And when politics start condemning something, laws are
created to enforce patterns of behaviour in society, and
these laws makes the prejudice somehow seem more
'objective'. We saw this with such as the laws prohibiting
gay behaviour that led to such as police persecution of
Alan Turing, a British war hero and inventor of the first
practical vacuum tube based computer, as well as a
fascinating thinker. The photos they discovered at his
home led to a series of actions by the police that only
in the beginning of the 21st century was officially
condemned by the British government: they asked for
forgiveness to the legacy of Mr Turing. The worldwide
lifting of bans on gayism in most Western Europe and USA
influenced countries in the late 20th century and early
21st century is however just one element corrected, and

29

there are a hundred more elements. Society is in a mess,
and thinking across all societies is dysfunctional and
deeply ingrained with prejudiced against sexuality.
 The few thinkers who tried to undo some of the prejudice
against sex, and who tried to figure out how sexuality
indeed can be a more central part of the entire worldview,
had to struggle hard to get every bit of the argument
heard--and they were supported but fractionally, compared
to collegues who, loyal to the false system, merely
promulgated the falseness of society.
 In upcoming volumes in this five-volume series we will
have a chance to look more into research using statistics
and, in some cases, scientific measuring instruments like
EEG, to explore also the abundantly important role of
sexuality for the human mind. We will look into this
through some novel work by the undersigned and others, and
as resume of some classical works esp on female sexuality.
 Let us now pay attention to the golden ratio again, with
an intent to use some words that perhaps have not been
used before in this regard, and some ways of thinking
about it that allows us more quickly to recognise the
golden ratio in daily life perceptions.
 We will load in app# 7,777,777, called AngelPen, and
sketch some golden ratios on the screen by step-by-step
thinking about how to use this app. This app contains a
handful of useful functions, slightly expanding on the
Third Foundation G15 PMN so that we can do some curves and
lines on the screen in a way that is compact, fast, and
easy to think about. This comes later in this chapter.

2.4
Consider these lines:
_____________/_____________________
=== =====
########:############
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



30

What they have in common is that the second part of these
lines of characters is larger than the first part of these
lines, by about 618 permille. The second line, for
instance, === =====, has three then five, two of the first
fibo numbers, as we call them quickly. The other number of
characters are all found by pairwise looking at the fibo
numbers up to 55: 3, 5, 8, 13, 21, 34, 55. The longest
line, of ~, has 21 ~ then a blank then 34 ~.
  Compare === ===== to === ======. The first has a 3:5
relationship, the second is a mere doubling. Doubling is
more mechanical: more the thing one expects of a machine.
The === ===== is more organic in its feel. It is not 2x,
not merely 'twice'. It is === plus a little more than
half of it. Let us call this 'essence addition'. Adding a
little more than half of it, nearly 62 percent, or more
precisely 618 permille, is one way to remember the golden
ratio.
  It works the other way around also: it is a form of
natural substraction. Let us muse about the first line:
_____________/_____________________
              _____________
The line is composed of 13 _ and 21 _. Now we have placed
13 _ underneath the 21 _. Let us study what happens on the
right side more clearly:
_____________/_____________________
              _____________........
We have put in dots on the right side. That turns out to
be eight dots. You see that we have 13 _ and 8 dots. That
is again two fibo numbers! Let us put these dots under
the _ in the second line:
_____________/_____________________
              _____________........
              ........
See what happens? Again, we are tracing the golden ratio:
_____________/_____________________
              _____________........
              ........;;;;;



31

We put in some semicolons after the dots, so that it
matches the quantity of _ in the line above. Here we have,
in fact, 5 semicolons.
  Why does this matter? There is a playful kind of
similarity of form, shaped by easy additions and easy
substractions, when we start out with the golden ratio. In
other words, when we have used the 'essence addition' once
--it keeps coming up in a lively way.
  Let us bear in mind that our brains are wired to look
for patterns within patterns and so much goes on in our
brains whenever we are sensing anything. The toddler may
not have heard about golden ratio or essence addition and
yet that is not preventing the living, learning, child
brain from adding and substracting lines, comparing forms,
comparing ratios, and extracting learning. And much will
naturally happen when we place these proportions beside
one another.
  Let us tune into it sexually: you are walking by the
poolside, and the / is where the bikini is, to the left
is the shining smooth sun-kissed torso of the girl, to the
right her legs, playfully stretched, her feet elegantly
arched--long long legs compared to the torso, accentuated
by the little bikini. As she sees you, she wriggles her
toes and stretches a little and many more ratios are
dancing before you--and it is all outlined in these ratios
if you blur your view of this line and engage in visual
beauty imagination:
_____________/_____________________
  The second line is like the first line but it has a
little more than half of the first line as addition to
itself--618 permille more, perhaps. And you watch her
fingers, her slender hands; you watch the similarities of
form of how her hair is dancing over her head relative to
the fascinating spirals of her ear: and in any beautiful
image, there are myriad similar forms, and forms that
contrast in ways that can be summed up through various
resonances including what we call essence addition.



32

  The spiral of her ear may compare to how her hair is
made up, it may compare to how the line of her elegant jaw
and her cute profile is shaped: and for some shapes, there
are other concepts that may come more easy to use than
the golden ratio. We have just mentioned 'similarity of
form', and a word that covers a kind of research into this
sort of thing is, of course, the word 'fractal'. It is
possible to argue that all of them are intimately woven
together with essence addition: that is an advanced topic,
and it is not necessary to always insist to seeing the
golden ratio everywhere. But since essence addition is
tied in to our very concept of what whole numbers are all
about, and whole numbers can be used when discussing any
type of similarities at all, it isn't surprising that we
can keep on coming back to it.
  Let us compare something like =====/======== to
something like =====/===== or =====/========== or to
=====/=============== (5/8, 5/5, 5/10, 5/15). 5/5 is
symmetrical--nice, but it 'doesn't go anywhere'. 5/10 is
perhaps going somewhere, but fast: too fast? Like the
sudden jump of a machine into action? 5/15 is almost like
two different things: 5 and 15, ===== and ===============.
  This suggests--and let us constantly bear in mind that
what applies for vision applies equally across all areas
where there can be any form of structure, all sensory
modulaties, also spread across the dimension of movement,
such as dance and music--this suggests, does it not, that
with the essence addition we have organic movement--and
with many other forms of ratios we have something that is
perhaps nice, but not so obviously organic and not so
obviously movement.
  In a word, essence addition is natural movement.
  And if you take this to heart, and masturbate over
countless fantastic porn photos while intending to teach
yourself orgasmic beauty concepts, you will encourage in
yourself a capacity to create great beauty whatever you
touch, whereever you go.



33

  Practically, when you plan ahead, being in such a state
of sensing orgasmic beauty patterns in this way, you will
sense what is whole and what is lacking in that whole; you
will sense what is whole and what is opposing that whole,
and which should have its kinks ironed out. You will sense
what you need to get to know more about, get up to speed
about; and where your competence is adequate. You will
sense also where words have a relationship to facts and
where the words are used more as tools of manipulation;
and be able to steer your own use of words so that fairly
coherent results after all can arise.
  We can call this type of work for 'pre-meditation'. You
are engaging in pre-meditation when you sense how you
should plan things, and get an overview over what you take
to be the patterns, and how these correspond with your own
natural behaviour patterns. In a state of pre-meditaion,
you can tell yourself how you should counter your own
instinctual behaviour patterns in a situation to fit with
a larger ratio, a larger understanding, a larger premise
for the situation. When you find yourself in that
situation later on, you will find that your intuition can
play on your pre-meditation and remind you of what you
told yourself, and so you are in a kind of dialogue with
yourself even in the midst of also speedy and fluid and
humorous action.
  Pre-meditation, in short, is one of the things that
allows you to more truly engage intuition in daily life:
an intuition that isn't merely a fancy word for following
your instincts, but an intuition that flows from
perceptions that you have nurtured earlier on. And these
perceptions flow naturally when you have a sense of the
sexual beauty of the essence addition, also as a kind of
value or ideal for the greatness of any action.



34

2.5
It is time to play around with Angelpen a little bit, so
we connect our capacity to think about essence addition--
also called golden ratio--to programming. We will, in the
spirit of doing things easy, and not get entangled into a
myriad technical discussions, simply load in Angelpen app
#7,777,009 and start it and look at its code. The result
of running that app--which is having all of 3rd Foundation
and then all of the #7,777,777 Angelpen app in it, and
then just a couple more cards--is shown on the cover of
this volume 2 in this Art of Thinking series. It is a
spiral and a bunch of golden ratio rectangles. We now know
that we can call them 'essence addition rectangles'. The
spiral is just to tell the observer to thinking in terms
of spirals while viewing the rectangles. We will turn our
attention to how one can make such rectangles in Angelpen.
  When we do this, you will also see places where it is
easy to begin to experiment with changes to the code.
This is a time-consuming thing, but once you begin it,
you will find that your understanding of programming
leaps (you don't have to do it to read this book, though;
I'm simply mentioning that it is an option).
  Here is the result of loading in the app, then using
the utility menu in G15 PMN to convert "CAR => B9EDIT"
(ie, the 'CAR edit' form, the program cards, into this
text editor, B9edit), then using app #9328123 which adds
the <k2>, <k3> to show which card on top and also adds
some spaces. Here, we don't include card K1, which only
has comments, and card K12, which only has a startup text
which says that one can type 'get' to get the graphics.
The graphics is, as said, at front of this book--though
of course it varies a little bit in pixel intensity,
something handled by the first function, 'freeink'.
  In case you aren't in the mood of liking to see code
like this, don't worry, just glance at this bit and that
bit of it; read comments; and read on. Unlike a typical



35

English text, program code can be studied bit-by-bit,
quite meaningfully.
  In the upcoming pages, we discuss card k2 to k11, which
are all the program cards in the #7,777,009 app. You can
read fast over this section and look at it more closely
later; in this book, there will sometimes be more tech
stuff, like here; and sometimes more free thinking, and
you can read in any sequence you like.

Card <k2> coming up, here is what it does: it makes two
new words, short for 'free ink' and 'free ink, and walk'
--and these can be explained this way: we want to draw
the rectangles with varying tone, or 'ink' as it is
called here. The word 'ink' sets the greentone 0..255, and
0 is black, while anything about ca 60 is a visible green
with 255 the brightest. So let's get it to vary between 60
and 255. The variation word is 'af', eg short for 'a free
number'. We give it 195 as input, so it produces a number
up to this--and new each time. Add 60 to this and we've
got the input ready for ink. Then it says, simply, 'ink'.
  In making a golden rectangle, with the shorter and the
longer lines being fitted with the golden ratio, we are
repeatedly going to use the word 'walk', which in Angelpen
(ie, the normal set of extra functions you can load into
the Third Foundation to make a certain type of graphics)
does drawing on the screen while it moves a certain number
of pixels. Just how many pixels is a number that is left
on the stack, usually before 'walk' is called. Here, it
can be left on the stack before 'freeinkwalk' is called.



36

<k2>
freeink=       freeinkwalk=
|changes ink   freeink
|rather freely walk.
60
195
af
ad
ink.

Let's get on to <k3> to <k6>. These make one full golden
ratio rectangle, given width and height as input. These
four cards are all about making the function 'goldcard'.
  Where will it draw the rectangle on the screen? You see,
that's one of the relaxing features of AngelPen: you tell
it how much it should move in its present direction, and
when it is 'walk' it leaves a drawing line, and when it's
'fly' it just flies over without drawing. It itself keeps
track of its present position and direction.
  To change position, call the function 'turn'. To turn a
corner, telll it eg corner /// turn. Half a corner, also
called '45 degrees', is halfcorner /// turn. You can give
any meaningful number to 'turn'. To make it turn left
instead of the normal clockwise turning to the right, you
can write 'turnleft'. That, combined with the words to
begin and finish use of AngelPen, which are, respectively,
'angelstart' and 'angeldone', is the most important set of
tools to do an enormous variety of graphical sketches.
  These can also be done by the sine, cosine and such
functions directly, if you calculate a bit around them.
  In card <k3> to <k6> as follows, the two sides of the
rectangle are stored in two places, the ix and i9, two of
the many places a function can easily store numbers it
wants to have access to, without having it on the stack
all the time. To store to ix, use 'sx'. To store to i9,
use 's9'. You can think of 's' for 'set', and 'i' for
'inside (this place)', ie, 'get the value inside'.



37

<k3>
goldcard=      s9
|in:width,     |start finish&finish
|height        |ca in the pos
|gives:        |of top right
|nextw{or h}   |pointing from
|Angelpen      |upper right
|draws from    |along height
|upper right   sx

Here, lots of comments are given, with | line first. So it
really only does goldcard= /// s9 /// sx on this card.
The comment tells that new width or height is given as
output from the function. The point is this: it finds out
what's the golden ratio reduction of the longest side, and
draws the long side and the short side, then it leaves a
copy of that calculation on the stack so it doesn't have
to be repeated by the calling function when that calling
function needs that value in the next loop.

<k4>
ix             i9
100            freeinkwalk
mm             corner
golden         turn
100            ix
rd             freeinkwalk
               corner
s5             turn

Here, in <k4>, things start to happen. Stuff is put to i5.
What stuff? The golden ratio of the width, 618 permille.
To give it a little extra precision it is multiplied by a
100 first, and round-divided on a 100 afterwards.
  And action: i9 /// freeinkwalk /// corner /// turn
  /// ix /// freeinkwalk /// corner /// turn



38

In other words--draw a line, turn a corner, draw a line
and turn a corner. The first line is ix or width, the
second is i9 or height. This stuff is repeated in next:

<k5>
i9             i5
freeinkwalk    fly
corner         corner
turn           turn
ix             ix
freeinkwalk    freeinkwalk
corner         corner
turn           turn

Note that the i5, the golden ratio proportion, is brought
in here as well. So we have not only width and height of
the rectangle, but also a third line being drawn up to
point out where the golden ratio is here. All the time the
greentone varies. The PC is simply told where to 'put the
pen' on the screen and there is no explanation given nor
any explanation given to the PC. It is an action script.

<k6>
i5             corner
fly            turn
corner         |Note:with the
turn           |quantum-like
               |visible pixel
               |we get extra
ix             |variations
fly            i5.

As promised, the function in <k3>..<k6> finished by
putting i5 on the stack, the result of the calculation.
  In <k7> there is a function called 'get' which loops
through calls to the function we just made, to draw up



39

rectangles inside one another; in addition, it loops so
as to draw up a spiral beside it.
  In <k7>, the word 'jump' is used: it is often used right
before the AngelPen routines are used for real, after a
little bit experimentation, to find the right position for
AngelPen to begin on. This is simply the x, y position on
the screen: jump just sets the starting position. The
slightly related word 'fly' moves along a path in the same
way as 'walk' but without drawing. The word 'jump' just
puts in the starting-position for all this.
  Two times 'pi' is a full circle if you remember your
trigonometry. On its own, 'pi' is a half circle, or 180
degrees. So pi /// turn means, simply, turn the pen the
other way.

<k7>
get=           angelstart
|Show it! :>   105
               3
               jump

               pi
               turn

Where did the numbers in <k7> come from? I suppose I
experimented when I made the program. You can experiment
with other numbers when you have time and see how it
looks.

<k8>
89             golden
s6             100
               rd
ll:5

i6



40

100
mm             s5

The program appears to me now to be made in a bit relaxed
manner: for we see that the word 'golden' is used inside
the loop, while on the next card, our function 'goldcard'
is called, which again calls the word 'golden'. I am sure
that this could have been compressed into a single call to
'golden': but it doesn't matter when we are doing a loop
with just a handful of calls, instead of a handful of
millions of calls.

<k9>
i5             angelhome
i6
goldcard       corner
s6

lo             turnleft

Whatever it does here it is just more of the same type of
stuff to make it go around and get gradually smaller
rectangles, five of them. In <k10> it shifts position by
'jump' and does 30 loops to draw a spiral:

<k10>
               30
               7
               jump

               ll:30

halfcorner     3
s4             walk



41

The <k11> has the clue to why it is a spiral rather than
something more like a circle: the i4 /// turnleft makes
it turn less and less. It spirals, supposedly, outwards:
it takes 905 permille off its turn-factor each time,
which is again a number that probably came after trying
out this number then that to see what works out. Try out
slightly larger or smaller numbers and you get various
spirals!

<k11>
i4             lo
turnleft

i4
905
pm

s4             angeldone.

It finishes with 'angeldone'. Alright, such comments on a
bit of code are perhaps not the greatest literary pearls
in English writing: but that also shows something of why a
programming language is an interesting thing. The language
used to instruct a computer is radically different, it is
contextless, action-oriented, number-oriented, unambigious
and often entirely dependent on great precision, however
this precision is usually rather simplistic--like being
sure that the x and y on the screen are within 0 and 1023
and 0 and 767. The wonder is that by putting in such stuff
to the computer that anything meaningful, let alone
sensual or philosophical, can arise. Yet it is the case
that when the computer does these instructions, it does it
fast and with a mechanical sort of perfection that can
manifest the idea of the creator behind the program, and
often in a way that wasn't entirely anticipated but which
after all can be seen to be the logical consequence of the



42

instructions. Programming is a unique way to train the
brain, to make it tickle in otherwise less-used neurons.

2.6
In the 2.2 part in this chapter, we talked about what it
is that sets the mood of being 'highly sexed' apart from a
mood with less alpha-waves, a more frustrated mood, in
which sexuality is less interesting. There is another take
on it, through the keywords 'identity' and 'worship'.
  When you are in a mood that is perhaps fairly energetic
yet without a sexual high to it, and you ask: where is
your identity? Where is your sense of self, your "I",
where would you point with your fingers if you had to
point? In some circumstances, you perhaps have a floating
feeling of identifying with much other than your body: but
in many cases, perhaps you would vaguely indicate the head
or heart region, or a region in between them. That's where
the sense of "I", or the personality, even your name, may
seem to be feel to be "seated", in a vague way, in several
states of the brain.
  When you are sexualized, it is the climax areas between
your leg, clit, dick, and near, that is mostly what you
identify with: the brain is giving peak attention to these
areas.
  To feel appreciated in the nonsexual state may mean that
the area near the head or heart or throat region is
getting positive appreciative nods from worthy observers,
which can include yourself.
  To feel appreciated in the sexualized state is something
different: a peak of appreciation involves that somebody
who is experienced as worthy in a way does a worship of
that centre of your sexualized being that is your erotic,
climax-oriented nerve areas. This also suggests something
worth being aware of: condemnation is a sexual turn-off.
The action of worship by somebody who is 'worshippable'
quickly leads to a sense of bliss which can go into
orgasm.



43

  We can describe this with less direct reference to the
body and the brain and give it a description in terms of
the subtle energies of soul and spirit. Beauty comes in
here because you are experiencing another's presence as
worthy exactly when that presence is beautiful, and it
enhances the sense of yourself being beautiful that your
experienced centre is also experienced as worshipped. All
in all orgasm becomes a kind of overlapping of beauty
without borders. And yet the most rewarding part of sex
may be before orgasm as a physical event: the pre-orgasm
may be more orgasm than orgasm itself, and can go on for
hours. Multiple physical orgasms are of course possible,
even for hours, but each physical orgasm involves a change
of physical energy. So it is the pre-orgasmic state that
in many way is spiritually the most orgasmic. And these
kinds of states can be nurtured in many different ways,
including through BDSM, which often involves stimulating
areas near the key sexual nerve centres. Of course lips
and breast tips, and earlobes and buttocks and more are
also erotic centres in a way, and there are erotic
sensitive regions inside the vagina on its upper side near
the clitoris, but little can beat the intensity of the
clit/dick area.
  Orgasm is, chiefly, a certain emotive event of spiritual
attention-gathering: it is a peak way to bring new forms
of harmony to the mind, clarity and energy to the body. It
is also a sense of abundant order, that life has meaning,
that cosmos is a whole. The sense of utter clarity, of
life being a kind of Concept throbbing with life, is akin
to the sense of order that may come upon the person who
experiences the freedom of programming a computer. The
order that is brought about in the mind from programming
may be faint compared to the thrill of the pre-orgasmic
play that goes on between two nude or semi-nude or fully
clothed human beings, or three, or four, or an even larger
group, but it is of the same kind entirely. And it may be
that for some, the extra peak of clarity that programming



44

can give to them, may be exactly what they need to unleash
new powers of sexuality and sexual urge and capacity to
worship and be worshipped: there is something near the
sense of the absolute about both programming and such
empowering sexuality.
  A good program is also a beautiful program. And it can
produce beautiful results, when it is thoughtfully
constructed. The beauty-experience is a constant guide in
programming, and the computer is in a very real sense
'perfectly forgiving': it is what you type in and give to
the computer that matters, not who you are or what body
language you had relative to the computer, nor how you
treated it the last time. Of course there can be certain
programs that have in them a recording of 'user behaviour'
and such, and which have security functions so as to
protect critical areas in a society: but the computer as
such as a clean slate, and in a way allows you to be met
as if for the first time, each time. As it is said in a
branch of buddhism: the zen mind is the beginner's mind.
The meditative mind, in other word, is the mind of the
child, the innocent mind, which has the newness of clarity
in it. This is something that the computer programmer, by
spending enough hours with the computer punching through
the syntax, always and inevitably gets through, at least
if there is no allergy against numbers. And this is
perfectly compatible with dazzling orgasms, a full-blown
sexuality, and the art of thinking involves being alive
to both fields, sometimes at the same time.



45

CHAPTER 3

3.1
In exploring beauty, let's be clear, it is an endless
exploration. It has no absolute, final conclusion. Let us
be religious and ask: Really!? If you imagine God in his
essence having absolute wisdom, insight at all levels--
absolute enlightenment--does he, too, find beauty to be an
endless exploration? That's a perfectly valid twist on it.
  In other words, has God any limitations in insight?
  Perhaps not, but in having the playfulness and gaiety of
mind to make a manifest universe like ours, God surely has
a great sense of time, humour, stories, emotions, and also
exploration. It is possible to imagine that while he at
his essence knows all in an absolute essence, he has gone
into his own unfolding storybook with a conscious intent
to be faintly less absolute in insight, so that for him,
too, beauty can be an endless exploration.
  And in this process, he creates beautiful assistants,
living beings, girls, so beautiful that even the most
beautiful manifest human being is a mere shadow of his
essence beings--his muses. That is at least a
visualization that could make sense, at the core of this
universe: something real and personal and lively,
something to account for all the recurrent patterns in the
manifest universe.



46

  To help his work processes, obviously, God and his muses
want computers, and a language to operate these computers
consistently. The computers can handle a lot of things by
their own buzzying in the background, so that not every
atom requires the full attention of God and his muses. If
the ancient Greek myths, a cornerstone of the European
civilisation, are anything to go by, these being are both
sexual and sensual. The Greek word for Zeus is pronounced,
in modern Greece, a bit like theeos. This is indeed the
same root in core that became the Latin, Christian word
for "God", namely Deus. Yet in Christendom, Deus was
visualized with less of the vitality of Zeus: where Zeus
floated around in his creation looking for beautiful
ladies and doing all sorts of transformations of himself,
even into animals, to easen his prospect of having sex
with a beautiful mortal girl, the Deus, as spoken about by
the followers of Christ become more the judge and the
emblem of inner peace. Zeus, too, had a judge-role: but he
combined this in one being with his sensual, sexual self.
  The lack of wholeness in the Christian conception of God
thus made Christian a dualist religion, in which the
temptation of sex was relegated to 'the bad one', a
laughing, careless, horn-being whose intent was chiefly
sex and to make others having a bad time. This 'satan', as
visualized by the Christian thinkers, was thus adorned
with a sexuality that the ancient Greek thinkes had
allocated to God himself. And, it is fair to say, I think:
a lot of bad things came from this Christian visualization
--and we can say this without considering it altogether
impossible that there is something like a satan, only that
a satan is likely to be an ungainly thing and likely to
have very little to do with sex. And this 'bad' thing, of
course, is somehow in God's own story, so that ultimately
the role makes sense relative to what God and the muses
really want, though in intricate ways.
  Such a pattern can be discerned in J.R.R. Tolkien's
fairy tale visualization of reality, where the most



47

'godly' beings--Tom Bombadil, Gandalf, Frodo, Sam and the
elfin beings--have their own sensuality intact, and in
which here is mostly sadness associated with 'the bad one'
--namely Gollum. There are no horns on Gollum, he is not
attractive. He is a force of mischief, but only within a
sort of cosmic scheme that makes good use even of this
mischief. The wisdom of Tolkien in constructing this
visualization of reality goes together with his lack of
pointing out of the fact that he was a believer in God,
and more or less a Christian: but clearly not in the sense
that the followers of Christ made Christendom into through
the Christian Bible and their typical interpretations of
it.
  The Elfin language is, perhaps, a pointer to the
computer language, that is engaged at the core of reality
to "run" this reality rather as if it were a computer
game. Perhaps we can stretch the fairy tale intepretation
further, and suggest that the mountaineous caves and the
rites of the dwarfs with their axes represent the divine
computers themselves. The friendship between a dwarf and
an elf--a theme in the Lord of the Rings--is perhaps a bit
of a visualization of how a longlegged beautiful muse,
scantily glad in a slight, perfectly fitting bikini, is
having a good time in front of some sort of mechanical
instrument, a computer, at the essence level of reality.
  And so, out of all this activity--involving, perhaps,
trillions of trillions of such muses, all centered on
pleasing God and being with God and doing his wishes, and
with--as in the elfin society of Tolkien--perhaps just
some (I visualize three) muses on top--rulers of all the
other muses--they create a set of universes. One of these
is marked 'manifest', the others are experiment to see how
things go so as to roll things back and try something else
if it doesn't work out so well; yet others are there just
for fun, and for training.
  In all my studies of physics, I know of nothing that
makes such a very rich visualization incoherent or



48

unlikely. It is the habit of 20th century style of
scientists to try to limit their speech of the
metaphysical to that which is 'necessary' (as they say).
They try to stick near to their measurements, and avoid
framing big hypotheses of explanation, preferring the
'small' explanation, when they can get away with them.
This has some merit, ie, it helps scientists focus their
minds to do observation and experiment jobs a bit better.
But it also means that the activity of using intuition to
select between one out of many grand worldviews, and to
fine-tune this worldview, has not been finely tuned in the
school of 20th century style scientists. They have, in a
way, been 'popperian' (see my discussion of this notion
in other places): and I suggest that we need a broader
attitude, involving conscious calling on intuition, and
what I call a 'neo-popperian' attitude.
  The art of thinking is thus a quest not merely to 'use'
the power of clear thinking in daily life, but also to
look at the core of our thinking processes, and allow
ourselves to dwell poetically and in big terms on the
worldviews that set much of the context for our thinking.
And when I have done this, I come to the God-rather-as-
Zeus view just skethced.
  In exploring beauty further, let us bear in mind such
vast possibilities. It is not merely 'adding a little
more than half each time, or 618 permille to be exact',
and 3, 5, 8, and on: beauty is also an infinitude we
should never entirely connect to any simple formula or
ideal or photo or manifest being. We need broader terms,
we need philosophy, we need a sense of crossing barriers
and letting go of formulae when we explore beauty, also.
  For instance, let us visualize something like a rosebud
as a symbol of beauty. You have surely played with flowers
including roses at various levels in their flowering. They
are as if composed of an embracing of themselves, in a
flowing, dancing, circular, smooth, elegant fashion. A
rose has many levels, we might say: the levels embrace



49

each other, the rose leaves cling to each other to make up
a beautiful whole form. Perhaps the universe is much like
a rose, in this way: perhaps the levels are held together
just thus.
  In the next part of this chapter, we'll go into numbers
and some computing again--fairly simple stuff in one way,
yet very 'hard core' data in another sense. We will see
that G15 PMN is, in its own way, a minuscle rose: the PMN
is in a way the outer part of the rose and G15 is the
inner leaves. We'll have a brief but memorable look at the
inner leaves, and see what happens when we touch them.

3.2
Ready to do some byte-dance, some peek and poke directly
into the core of the computer?
  One of the design objectives with G15 PMN was to make as
large part of G15 PMN as possible steady and trustworthy
and concrete, concrete also in which numbers that do what,
where. Here and there we have had to let things be open to
change but the key point of having a good stage for the
dance of your mind and feelings to unfold on is that not
all the stage is wobbly. Something of it must be firm,
knowable, so that you can put force into your mind-jumps
at the right points.
  That is why, although we can make as many apps as we
want to, and every one of them can contain their little
additions to the G15 PMN language--and some even contain
variations of it--the core is stable. And we can only have
a stable core if it is tiny, so that we have had a chance
to look at all of it again and again and perfect it.
  If you look at the left side of the menu that comes up
when you press the <HOME> button of your PC, the G:15 main
menu, you'll see that it says PMN and just underneath it
says: d/65000 (where the / is the up-arrow in our G15 PMN
font, rather than the slash; the up-arrow is technically
in the position of the unnecessary percentage sign in what
is called the ASCII set of characters, see Vol. I).



50

  When you click on the / between d and 65000, you get the
smallest PMN possible: only two- and one-letter commands,
and a tiny set of them, much smaller than in the standard
third foundation. The third foundation has fancy two-
letter words like KU (add to what is stored, a combination
of AD, which adds, and KL, which stores), as well as a
rich set of three-and-longer set of words such as SCAN
(which looks for any text bit over even thousands of
cards, fast).
  Let's produce a change of PMN, just for fun: a harmless
change, that will exist only in an isolated spot of the
PC, and which we can then wipe away, cleanly. But it is
nevertheless a big change, so big that in fact nothing of
by far most programs would work in their present form if
we put that change to them. The point of the exercise:
that you get a sense of the real force it is to handle the
levels underneath the surface level.
  In any G15 PMN terminal, you can of course do stuff like
this: 25000 /// 5 /// ad /// nn   and get 25005; and if
you put in su where it says ad you will get substract
instead and you'll get 24995.
  So let's kick some ass and change 'su' to work as 'ad'.
Ready? Steady, go:
  In case you have mounted anything, such as AngelPen or
the third foundation, unmount it first (so we're sure that
the disk K is free):
  Click CTR-Q at the main menu, MNT, and 4 and it should
tell that all disks are normal; type CAR to get back in.
  Click CTR-L and type d65000 and press enter. You are now
at the first of between 800 and 900 cards which follows,
and they contain the slightly cryptic code called 'G15'.
This G15 is one huge step nearer the very electricity
inside the PC. Each bit of G15 translates into a number
and each number into a series of 0's and 1's and each
series of 0's and 1's corresponds to a series of slightly
stronger stream of electrons versus slightly milder stream
of electrons.



51

  Right-click mouse so you're sure you're in Edit mode.
  Click CTR-C and throw in 888 and hit enter.
  Click CTR-L and load in card k1 instead (I assume you
have nothing important stored right now at k:1, if so,
backup it to somewhere else first).
  Click CTR-T and as you press <SPACE> you confirm that
you copy the 888 cards from d:65000 to k:1. In other
words, you copy the core PMN to the start of the k-disk.
  You can check your copy of PMN in two ways, either by
typing in k/1 (with the arrow instead of slash) and saving
it to a place that is easy to reach like g:14 (you reach
the place by <HOME> then <PGUP> keys). Then go to Menu
mode (use CTR-W), and click on the arrow. It starts at
once.
  Or, a slightly more technical way to do it, good to know
in case the mouse at the moment isn't available, but it
does require that it is in the edit mode--so I hope that
the mouse is available! That is, begin by right-click of
the mouse.
  Go to k:1 (by CTR-L).
  Click <CTR>-A and hit enter. It will now 'assemble' the
code that starts right where you are (up until it finds a
line of 's). Click <CTR>-X and hit enter a couple of&finish
times. It will start it. When you exit the code started
this way, be prepared to hit enter an extra time.
  Happy about this? Good. Now you know how to start the
code that begins at K:1.
  I have done a little bit looking around and can tell you
that at card K:418 and K:419 the command SU is defined. So
go to K:418 (use CTR-L) and have a look.
  The PC has a tiny program inside it, started when it is
turned on, in which the translations of the stuff typed in
as G15 commands in text are translated to numbers. This
translation, or 'assembler' program, is made so that it
can help a little bit with the writing of the cards. One
way it helps is that it allows comments to put be put in:
they each end with the big + sign you see there. So any



52

word, or several_words_linked_like_this, which ends with
+ merely tell us what the programmer wants to tell at this
point. The card k:418 talks about this being where SU or
substract is defined. Okay, cool. Go to k:419.
  See it says 'su123'? That's the sort of little text bits
that get transformed into the numbers that in turn what we
call the G15 CPU can handle (not 'understand', for a PC
doesn't ever compete with the human mind). These numbers
are all between 1 and something less than 300 for there
are only 2-300 G15 CPU 'instructions' (as they are
called).
  Change it to 'ad123'. In other words, where the textbit
su123 appear, be sure it says ad123 instead, and press
CTR-S and save it back to exactly the same card, k419.
  Let us speak in words what we just did:
  We have a copy of the core of PMN. At card 418, and also
419, the command 'SU' is defined. It is defined by several
G15 instructions, a bunch of them on each card. One of
these instructions are 'su123'. We changed this
instruction to 'ad123', and saved it back into the private
copy we have made of PMN. Let's now start the private copy
and see what it does.
  So go to card k:1, via CTR-L. Be sure it is in the Edit
mode (right-click mouse). Click CTR-A /// CTR-X /// and
it starts. Now:
  25000 /// 5 /// su /// nn ///
In other words, we are instruction the PMN to SU 5 from
25000. What does it say? 25005. Cool, eh?
  If that doesn't tell you something of the power of going
one level underneath the manifest level, nothing will :>
  Put in kinder words: when you do a tiny precision change
at a deep level, you can get the most vivid results at the
visible level. It is a mere change of two letters at
exactly the right place, and, voila! no more arithmetic.
It is all a mess, but a very predictable mess, as long as
we restrain it to one copy of the core and to just some
definite experiments with the core.



53

  However, as means to learn G15 core programming, it is,
as metaphor, equal to testing a drill by drilling a hole
through the table.
  To rectify our conscience, let us do a fresh copy of 888
cards from d65000 to k1 right now. It will again work as
it should, the good ol' su. (Note that while you can use
CTR-X again and again, it only takes in the cards afresh
when you click CTR-A first. So after copying the 888 cards
you do CTR-A first, and CTR-X second, to see that the
refreshment of the cards in fact did work.)
  Now the table is complete again: the hole has been 'un-
drilled'. This is one of the chief wonders of computing,
as I see it: that you can do incredible damage within a
limited confinement, then undo all of it and the PC is
blissfully happy with you; nothing of the slow process of
forgiveness one sometimes find with some people who ought
to find a better foot to get up with in the morning. The
PC is, or can be, one of your besties; it is your tame
dog, always present as a subserviant element; it is your
blank canvas, ready for anything and ready also to be
instantly cleared at your command. Now it has to be said:
this is also a design objective with G15 PMN. We are
talking not of any PC, but of the G15 PMN PC. It is
perfectly possible to make wobbly PCs where everything
done is leaving traces and nothing is completely erased
and where only a subset of commands are followed unless
the PC receives background commands to back up your
command.
  The G15 PMN PC is a good mind-enhancement, especially
when the G15 PMN is related to also through programming.
In that way, it is the claim of this author that it is
uniquely 'human thought friendly'.

3.3
If you actually followed the previous part of this chapter
and it also was at least fairly new to you, it was tough



54

going. It is tough going not because there is a lot of
code there, but because it is 'strange' and 'deep', full
of implications, both easy to imagine and more far-out.
  To go one level underneath the PMN programming language
and to touch on the G15 core more directly is a bit like a
discussion of worldview with your friend. Are there really
muses, overseeing all, even though they are invisible? Do
they sometimes overtake a mortal human body, as the
ancient Greek and Roman myth love to tell, and 'speak
through' those we meet in the flesh?
  Perhaps you will find that such a discussion, though it
seems utterly far removed from all practical issues, later
on shows you something of the attitudes to concrete things
such as agreements, clock, plans, timing, even music,
dance, sexual entertainment and so on. Obviously, somebody
who is religiously engaged tend to look at agreements in a
light that is deeper than, 'easy come, easy go'. The
agreements have got to be "right". And if they are "right"
it also matters that they are kept. Making plans for the
future together with a person who has a lot of conscience
is usually a safer bet than with a person who proudly
proclaims that she has 'no morals' (an easy thing to say
for an atheist).
  In that way, we are touching on the relationship between
daily life action and philosophy. Philosophy lays the
ground for harmonious daily life: a harmony that can also
be vastly creative and exciting and full of interesting
surprises, if the philosophy is truly well tuned.
  In the same way when it comes to programming: a program
is made at a certain level, and there are always some
levels--at least one, as we saw--underneath it. And the
levels underneath it have got to be well-thought, clear,
orderly, and yet not orderly in a too narrow sense. But
rather in a sense of vast potential for good order.
  When we are looking at robot programming, we are
interested in having programs that can, more than many
other types of programs, match on patterns in what comes



55

in of data e.g. through the cameras of the robots, and
from these matchings produce changes in the actions of
the action-part of the program. We don't want the PC to
wholly re-invent itself: that could go astray in a bad way
and we need a limit on how much a robot can engage in
mimicking natural human learning processes.
  A way to limit it is this:
  imagine that a bit of a program is put into a long list,
with other bits of the program also in that list--and some
bits of the program not yet on the list. Let us further
imagine that the program bits can select to put in, or
remove, some other program bits from the list. The list
can also contain some data--eg the data from a recent
camera viewing of the robot--and some program bits can go
in and do modifications of some of the data in the list.
  Each second, or more likely, many times pr second, the
PC has a 'master control program' that runs through the
list of program bits, and perform each and every one of
them. Each program bit may contain some data as to whether
it should be performed or not: a sort of "on/off" switch,
some number like 1 and 0, stored in a place, that can, in
a flash, activate/deactivate a program bit.
  Sometimes the list gets a bit chaotic in its sequence.
Imagine that a program bit puts in another program bit to
the list but marks it that it should be performed just
about before every other bit. How can that happen?
  The list has got to be sorted. For this, we have a very
simple method, that works in many circumstances, and that
constitute a sort of classic program. It is called, often,
'bubble sort', for it sorts in a way that can be
visualized a bit similar to how bubbles may float up to
the top of a cup if one blows bubbles into it with a straw
or something.
  To talk of this sort is a bit like talking of infinity:
it is a theme that should be done in moderation, for no
matter how seemingly innocent the theme is, it has some-
thing a bit mind-bending in it. Something hypnotic. Some-



56

thing that can put the mind on an edge if over-done too
many times in a short while like a week or a month.
  The 'list' we talked of in this part of this chapter is
not merely a flimsy idea: it is actually a list in the G15
PMN robots. It is more precisely a matrix, for it is a
list that has several levels. The program bits put a sort
of 'level number' to themselves, and within each level, it
doesn't matter which sequence the bits are performed in.
The 'master control program' will move upwards through the
levels, to gradually higher and higher level numbers,
until done, and then loop to the beginning again. And each
time the levels need sorting, there's a bubble sort, built
into core Third Foundation G15 PMN, to do it for us.
  The robot programming is, as you perhaps know, also
called FCM, or First-hand Computerized Mentality. The
robot programmer 'puts' something of his or her mentality
into the program. The whole idea of a matrix of program
bits is a bit like having a mind to do something in a
certain manner, with some open sequences within a master
sequence--a bit like sex--as a metaphor we have frequently
called on so far in this volume, and will keep up as a
theme throughout.
  Among the themes touched on in this chapter is just that
bubble sort, also technically. If I may suggest so, do not
dwell on this chapter for days in a row. Look at it at
most once pr month, and don't waste any time over it if in
that same month you work on infinity questions. Don't
burden your mind with questions that can put it into
self-referential loops for any too much: it can fray your
brain, make you self-enclosed. Don't risk burning your
brain, it is your most valuable asset. With your brain,
you can lift your body into the style and fashionable
radiance that evokes the sense of beauty in others. But it
has to go through your brain: and for that, your brain has
got to work well, really well. And for your brain to work
well, you mustn't overburden it with the most cryptonitic
parts of the art of thinking. (The word 'cryptonitic' is



57

given a certain sense in some of the writings by same
author; please look up these writings if you haven't
already acquainted yourself with them.)

3.4
What is a fact? Fact goes beyond observation: it is a way
to summarize observations, sensations, experiences. When
there are competing ways to do so, things get complex. It
is a task of philosophy to find out what are the good ways
to divide complex tasks up.
  In heated arguments, one person may stick to one way of
summarizing events, and another person may stick to
another way. These ways can sometimes be called stories or
'narratives'. They usually, when forming part of an
argument, involving dealing out implicit or explicit guilt
to someone, or asserting causes that means that something
is wrong somewhere. Each narrative can have a set of
accusastions in it. Each person may defend own narrative
as 'truth' and try and label the competing narratives as
'fictional' or even 'delusional' or 'crazy'.
  When looking closely at a narrative, it usually consists
of many sub-narratives, or tales; which in turn consists
of summarises of ways of seeing and observing and
experiencing something.
  A calm philosopher, well educated in the art of thinking
knows that every way of observing need to be independently
looked at and checked separately and that this usually
requires much time, indeed it requires harmony and
tranquility and a kind of musical intuition that is in
essence willing to listen to what presents itself, rather
than forcing any narrative on top of observations.
  Let us construct an artificial example of this, in
which two people are having an argument of whether to
bring rain clothes to the walk or not. One person has a
narrative that the other person is always wanting to bring



58

too much clothes and is always misperceiving the weather.
The other person has a narrative that the first person is
always living on positive expectations in a short-sighted
way and tends to get a cold as a result. At issue is also
some really dark clouds that are seen outdoors on the left
and they appear to move to the right and will shower down
soon--or they don't move to the right, but rather will
vanish completely.
  The example may seem artificial but the question of
observing a very, very slow movement is worth musing over:
anyone who has tried to make up her own mind about the
direction of movement of a cloud when it moves very slowly
will have a philosophical experience teaching how the mind
is actively forming 'theories' in order to help its
sensation of reality. For instance, at one point, you form
the opinion, the theory if you wish, that the cloud is
moving to the right. Stick to that theory and keep
fixating on a point in the sky. If you are right, you will
get a sense of confirmation of it after a while. That
sense is vague, because fixing on a point in the sky is
usually complicated--because we usually have no reference
other than the clouds themselves, and they are moving.
  Therefore, you keep on observing the clouds for a while
with the opinion that they move to the right in mind.
  In order to be unbiased, to get a fair summary of the
movement, you must however try other 'theories' of their
movement. At the moment, let's stick to the left/right
direction, and assume that the clouds are either moving
very slowly left, or very slowly right.
  To check the cloud movement honestly, you create an
alternative movement idea, or theory, namely that the
clouds move left.
  After a while, you will have got a sense of more
confirmation of one theory than the other.
  In your mind you let a 'bubble sort' select between the
two theories: which one got the most confirmations? Which
theory, in other words, led to the most effortless sense



59

of matching reality? In yet other words, which theory
gives you a tranquality and harmony inside?
  In brain science, we are speaking of 'alpha' waves,
associated with harmonious thinking.
  Each narrative consists, usually, of bundles of tales,
each of which relies on many 'theories'.
  Ideally, we would not stick to the idea of evaluating
narratives very often. Rather, we dissolve the narratives,
check each theory as well as we can. Reaching harmony on
each point, we allow new narratives, if we wish, to be
formed with these harmonious observations of facts to
build up. This fills the brain with alpha waves. The beta
waves are associated with nurturing points of conflict.
Alpha waves are associated also with good-natured laughter
and the type of masturbation, heavy petting and sex that
has a quality and flavour of meditation about it.
  A positive role of programming is that when a program
has got to be corrected, we need to form a theory of where
it has got wrong, and that theory must be right for us to
formulate a good plan on how to correct the program and
to implement that plan. This plan may be conceived in a
split second on observing an issue with a line in a
program, or--on the other side of the spectrum--it may
dawn on the programmer as a fundamental issue that the
programmer simply didn't think of when the foundation of
the program was made, and that may require rewriting of up
to a third of the program, or even that the whole idea of
the program has to be fundamentally changed.
  This positive side of programming, in other words,
involves a teaching, through the interaction that the
programmer has with the Personal Computer running the
first-hand thought-friendly programming language, of what
it takes to form well-founded theories and abolish
meaningless narratives. The tranquility of mind on
securing a right perception, a correct way of seeing on
how to make a program work right, has sometimes an
ecstatic flavour, and that flavour comes from the sense of



60

order and art about it, the sense of beauty of the
structure as experienced through a narrative that is
fundamentally true and having a pulsating, meaningful
relationship to reality at all points.
  In exploring complex situations, where it is far from
obvious, at first, what is right action, the intelligent
thinker learns to trust the art of effortlessness: which
is another expression of the natural 'inner bubble sort'
of the mind, picking in an almost automatic way the
opinion or theory that comes to rise to the top of the
'list' of alternative theories, considering how much
verification or confirmation it has got and how little
contradictory evidence. Each instance of confirmation is
in turn a result of a spontaneous 'inner bubble sort' of
reaching a point where the mind nods to a possible
insight, a perception.
  To live absolutely by facts is, we can propose, only
available to a being of absolute enlightenment, and that
goes beyond what mere manifest human beings can achieve:
and it can be argued to be a severe hubris to try to
achieve absolute factuality; and a severe lie to project
to others the idea that this has been reached. Of course,
the sly egoes who wishes a grand audience and who craves
the artificial pleasure of having disciples and being a
guru to these people may be hypnotically convincing--at
least to stupid people--that they have absolute or near-
absolute enlightenment. In the 20th century, one of the
most fascinating sly egoes, who mesmerized countless many
stupid people, was called "Osho": he got people to talk of
him as "on a really high level", and indeed also being
"absolutely enlightened". Another was Sai Baba. Yet
another was Maharishi Mahesh Yogi. Another such sly ego
founded a teaching called Kriya Yoga. And every world
religion has had its sly egoes, setting themselves up as
more or less absolute--the Dalai Lamas, the rabbis, the
imams, and so on. All these sly egoes usually had, however
--and that goes for Osho as well--something magnificent to



61

teach. That magnificence in the case of Osho was his
freedom to view sexuality as perfectly valid in a quest to
go deeper in meditation. All else about him was rubbish.
  Another teacher, Jiddu Krishnamurti, had the
magnificence to clothe the language in Zen in a brand new
way using only normal English words in an extremely poetic
way. Apart from this, he was a sly ego like all the
others. Somebody who cloned this language but made it more
extreme was the teacher who liked to call himself "U.G.".
  In the 21st century, we have countless new types of
clever sly egoes, gurus who have browsed through the books
of thousand sly egoes and put together their own
particular mixture. They may have a wolf's smile on the
back of their sly teachings, and yet be in a position to
mesmerize thousands and yet mor thousands of followers to
speak of them as prophets and pure lights and a real
streak of absolute enlightenment and innocence come into
this world.
  It is easy to see how the sly egoes have an appeal to
people on this planet: the planet is miserable and damaged
in many ways; countless people are living in poverty; most
official 'top ten' lists of winning people and entities
are corruptly shaped and bought by powerful people; wise
actions are avoided; unfair actions are implemented by
societies whose leaders glorify themselves as democratic
and noble; cities are so polluted the Sun is not visible
for days at a time; rivers dry up and the little water
they offer is colored by factories which ignore global
environmentalism concerns; and add to this the endless
conflicts, fights, wars, and newspapers devoted to selling
narratives rather than exploring facts. It is a momentous
stupidity, and when a sly ego, a king of astrology and
EEG and meditation and kabbalah and zen and sex comes
around and points out how bad the world is and how lovely
it is to follow the calculation schemes in his or her
books, of course there will be followers--maybe a portion
of the planet will follow. It is all part of escapism. The



62

real religion lies elsewhere. It doesn't lie in the
glorification of the unfactual narratives provided in the
spirit of escaping this planet; it doesn't lie in paying
tribute to the prophets who pretend not to be prophets
while they are spending every minute of their daily lives
trying to be prophets. These sharks of the human psyche
are creating stagnation: and yet every one of these sharks
usually could not have power unless they have something
factual, something good, something true, shining as a
power in their belts, in their armouries.
  The religious seeker, the seeker after fact, will
therefore do well in educating herself to listen to facts
without bias; to learn to dissolve the narratives of
prophetic people into sub-tales, and the sub-tales into
gradually finer levels of sub-tales until the level of
individual sensory experiences are reached; and to apply
own mindfulness and attention to each proposed theory.
  However, a portion of most religious proposals involve
things or beings which do not admit to direct sensory
experience. This means that we must go beyond the
criterion that each theory is to be checked merely
relative to sensory observations. We must be willing to
engage intuition relative to each bit of each tale also
when these bits include references to a reality that is
beyond what can be seen with the eye.
  For instance, let us create, as a thought experiment,
a variation of the cloud observation idea we talked about
earlier in this part of this chapter. Instead of talking
about whether a cloud moves to the left or to the right,
let us talk about beings that are beyond sensory
experiences. I have earlier mentioned the word 'muses' to
refer to just such beings. Let us imagine that we share in
an intuition, a mental nod, that such beings indeed do
exist; and as a thought experiment, imagine two people
arguing over whether the muses are taller or smaller than
themselves. This may in turn be part of a larger narrative
involving some kind of false prophet, a sly ego proposing



63

certain things about reality in the pretext of having some
absolute enlightenment.
  The religious seeker will, in the opinion of this writer
--in such a case--do well in being sceptical about the
glorification of any person's 'absolute' insight into
anything; and yet be willing to consider--as theory--that
it may be correct that the muses have a height that can be
conpared to the height of, let's say, the typical child or
the typical adult.
  The way I see it is that this is much (but not
completely) the same type of mental activity than that of
observing very slow clouds in motion. You form a theory,
and wait, quietly, and get a sense of whether it is right
or not. It has to be a simple theory, like, 'the cloud is
moving to the left', or, 'the muses are no taller than
children, at least not usually' (by 'simple' I mean that
it feels to be a simple theory given the background of
word usage by that person; at a later stage, different
words may be used in order to create a sentence that feels
to be simple--for instance that muses are considered to be
of one height when in one 'mode' and another height when
they are in another mode).
  The theory you wish to get some information about has to
be entertained in the mind in a flowing way. This flow
comes after fixing the mind on the theory for a while. In
the old Sanskrit language of India, it means going from
the phase of Dharana to the phase of Dhyana. Dhyana is the
word for flow that in Japan became Zen through the Chinese
Chuan. In sticking to the flow, it can get an element of
harmony, even ecstatic harmony or tranquility, and this is
in Sanskrit called Samadhi, and it can have as many levels
as orgasms can have. The triplet of Dharana, Dhyana and
Samadhi is, in a lucid tiny script in India, attributed to
a certain Patanjali, called "Samyama". That is a religious
term but we do not have to be fundamentalists in yoga to
use it. The fact oriented person can be eclectic relative
to all religious books and scripts, and deny the validity



64

of any form of nationalism or secteranism, including that
of yoga.
  Samyama is therefore the way to decide on any question,
from the movement of clouds to the heights of muses. We
note that Patanjali also mentions its applications in
generating events: this is the most ingenious part of his
production, that he sees the same mental instrument that
does fluid perception as the instrument that can affect
reality in some deep way. In other words, samyama is both
meditation over fact and what religious people refer to as
prayer. It is both intuition and telekinesis. It is the
brain/mind/body/soul/spirit organically working as a whole
both with itself and with all reality. In this language,
samyama is the essence of the art of thinking.
  And, by the way, this writer's samyama suggests that the
muses are real and suggests also that their heights are,
typically, as that of children.

3.5
Imagine a world entirely without computers, just as a
thought experiment; a world in which there are buildings,
some form of music instruments; food; massage; some kind
of cars; this and that sort of nature; drawing classes
and painters; cooks and restaurants--but no computers and
no option to do even the faintest element of programming
in front of a personal computer. There is literature and
there is dance, but no computers. In school, it is taught
that 2 plus 2 equals 4 but there are no computers.
  You have got the vision? The thought experiment?
  Let's for the moment not say, 'Oh that's very easy
because it used to be so all over the place according to
the history books.' Because 'the past' (whether described
accurately or not) is in a sense also a vast piece of
literature, a grand type of fiction given an extra



65

credibility, filling up our minds with interpretations of
where we humanity happens to be and where we are going.
  And the thought experiment is going to give us a vision
and a feeling of that vision; the vision of a society
completely and utterly devoid of computer programming; and
I wish us to switch between that thought, that vision, and
the vision of this our real society that does offer
computers, indeed personal computers, and the opportunity
to type in commands and having the computers obey them
completely.
  When you meditate quietly over such a vision, such a
vision experiment, and switch between that and the vision
of the reality, and give it some time, in privacy, sitting
still, listening perhaps to music but not deafening music,
just quiet music, you will get, sooner or later, two
different sensations in your body. The sensation of the
vision of the computerless society, and the sensation of
the vision of the society that offers personal computers
for programming.
  Along with the sensation, which may physically be felt
as a sort of mood in your gut, may go certain perhaps
vague or perhaps more concrete image glimpses, and some
words or phrases or sentences may come around in your mind
alongside these glimpses. Pay quiet attention to it all,
be mindful of all these sensations and mental images.
Encourage the visions to develop a little bit.
  After a while, you may find that, quite spontaneously,
in your silence, in your witnessing without prejudice of
these two societal visisions--one real, one imaginary--
the mind sums up a vision through a feeling, perhaps
through the word of a feeling. And it may seem to you that
your mind has a life on its own, beyond the idea that it
is 'your' mind and 'your' thoughts; rather, a part of the
mind is giving the rest of the mind some kind of impulse
or 'mental nutrition'. This mental nutrition is as it were
mentally digested in phases. And in this process of
digesting the mental content, various parts of the mind



66

are activated and as it were speaks back to the sense of
yourself. You are not controlling your mind as much as
experiencing that the part of the mind that is most you,
most yourself, is in a kind of dialogue with other parts
of the mind that may be more associated with the feeling
of the whole body, the feeling of life, and which are
capable of talking back but may do so more fleetingly and
more as a suggestion.
  In a way, the part or aspect of your mind most giving
you the feeling of 'being you, being in control', is like
a boss of a company where there are several employees,
each having unique talents, temperaments, ways of
approaching things; and while they are all in principle
obedient to the boss, they are also living and quite their
own beings and the boss shall have to have a humility to
that fact and not merely dole out instructions to them.
  In giving a bit further, we can suggest that these parts
or aspects go beyond you as body and brain and go beyond
even your personal mind to touch on levels of shared
impulses between people and even beyond that, with reality
as a whole.
  On occasion, you may even find that there is a concert
of expressions that can arise from something beyond
yourself: indeed, every sentence of this section of this
chapter was written without conscious control; was
written, indeed, without the slighest conception in the
"I" of the writer what was about to come; was written in
the middle of the night; the only starting-point was, "hm,
there's a sense that something ought to be expressed,
don't know what but let's take up the B9 edit and see if
something comes around. I mention this also to point out
that the aspects of the mind that appear to be silent or
very simplistic about words--perhaps on occasion just
providing one or two words to sum up a situation--may,
when given the proper tool and mood and time, be found to
be subtle and rich also in verbal communication capacities
--which is a good thing.



67

  I dwelt on the two visions of society, one without
computers and computer programming, and one with--and, as
you noticed, I drifted a little bit and talked of some-
thing a little different. In again giving mindfulness to
the two visions, I assumed that the mental work had
continued at a subconscious level and that some more
mature results could now be extracted. There is a sort of
innocence in returning afresh to a topic after having
introduced it, then left it; and in this innocence, there
is less pressure from the more conscious part of yourself
onto the subconscious, or other parts of the mind; and so
less bias; and so deeper and better and more coherent
intuitions.
  The computerless society--the vision of that--is, at
this stage in my mind, giving rise to a word, 'sadness';
and a sort of metaphor--food without spice; soup without
structure; and the society with programming gives me a
vision of something with a kind of bluish electronic
sparkle, metaphorically associated to hot chili spice
added to food so as to make it more holistic and more
pleasing; the sparkle I imagine to be as if fairly square
as a sort of frame around content of other type; and these
frames are as if beside one another and having the
dazzling finesses of electricity.
  The art of thinking surely involves cultivating a
mindful dialogue within the mind and without the entirely
unnecessary preconception that the mind is bordered in or
generated by or limited to an organism, even though the
mind as experienced by a person usually has a sense of a
central locus eg in the brain. The human brain must be as
healthy and whole as can be to allow the mind--which does
not exclude heart, nor exclude feeling--to flow through
it. A damaged human being whose brain is only partially
functioning is out of resonance with the mind-capabilities
of this human being. The brain is necessary but not in any
sense sufficient for there to be mind. Any prejudice
involving a view of the human and a view of the world such



68

that mind is 'generated' by 'the physical processes' of
the human body with its brain is, as I intuitively
perceive it all, a stupidity, and it is not just any type
of stupidity, but a generative stupidity; and in a young
person, it is a kind of pre-senility to have such an
atheistic view of human mind. Nothing is quite working as
it should in someone thus severely biased as to the
nature of the human mind. A society full of a cultural
conditioning of the atheistic prejudice of this sort
connected to the vision of the human being is a bastardly
society indeed and no politician or political ideology can
go anywhere near in being medicine enough.
  The human mind may have a sense of a controlling centre,
but this centre must in a way suspend itself in order to
call on the contributions from other aspects of the mind,
which may be as much centres as the centre of the "I".
  Pushing it, the mind must not always call itself "mind",
as if there is an inherent clear-cut distinction between
mind and matter or between what we call mind and every-
thing else. The flowing undivided attention that becomes a
meditation is at times wordless and visionless and in such
a state of silence or samadhi or union or nothingness or
nirvana or whatever we call it, a fresh insight or even a
new reality may emerge.
  Part of the dialogue of the mind with itself is not just
to 'wait' for impulses, but also to raise questions into
awareness and allow the question to 'work', rather as you
are letting light and water and soil be applied to a seed
so that the seed can begin to sprout.
  The question I wish to put to the vision of the PC-less
society, which in my mind was summed up as 'sadness', is
this: why sadness--why are computers so seemingly
necessary--why is programming so important?
  A question leaves something out, but includes an intent
to get something in.
  That intent communicates itself to the rest of the mind,
conveys itself.



69

  The intent may be called 'a desire', but it can be very
calm, and unlike the feverent desire to eat something when
one is intensely hungry. The intent to get in information
associated with a question to oneself is a kind of 'sense
that there must be some information coming in', and a
trust goes along with that sense; and a patience as well.
Not an infinite patience, but a patience involving an
interval, a pause, a wait. In Patanjali's terms, it is not
exactly 'samadhi' in its most extreme form, but rather,
'samadhi with a seed'. The seed is the quiet, persistent
urge to get feedback as to the lacking element in the
insight.
  Supposing that this writer has a well-functioning mind,
and not a mad mind, it is a valuable quest for this writer
--and perhaps for you as reader--to get an as accurate
description as possible of the sort of rules of thumb that
this mind applies to itself to get its normal processes
done. And this is exactly these five volumes of the Art of
Thinking.
  I still have the question, 'why is a programming-less
society sadness'--and my intent is to complete this
section of this chapter with a novel proposition, a kind
of explanation that is not merely yet another metaphor.
  I am getting up impulses now, in my dream-near state of
mind now in the middle of the night, that quietly and yet
strongly answers this question in terms that we have
discussed earlier in this book. (My approach of writing
each book is that of trying to avoid editing too much
later on, rather allowing the 'mind-field' of the book as
it were grow gradually and unfold more and more.)
  We have sometimes used the word-pair 'manifest' and
'subtle'. Do you know that word-pair well? It goes into
the answer to the question. Look up these words if they
still feel foreign to you. Manifest, 'mani-fest', comes
from roots meaning something you can manually hold, hold
in your hands; subtle, 'sub-textere', comes from roots
involving a texture or pattern underneath or in between,



70

as fine threads in a piece of clothing with a distinct
pattern that can only be seen by looking closely at them
in a certain light.
  The manifest world versus the subtle world: quantum
physics and spiritual experiences hint towards visions of
the subtle world; the manifest world is directly measured
and experienced through sensory organs. The subtle world
lies underneath the manifest world and creates it, moment
by moment. And in this subtle world there are structures
that the manifest world can have words for and images of
and ideas about. We have earlier on talked about the idea,
the natural proposition, that the subtle world has
computers; has programs; and that this is one of the
features that makes the beings of the subtle world very
happy--that something is going on all by itself; and yet
can be intelligently changed by changing the programs, or
operating on the programs.
  In order to even say this sort of thing--that the subtle
world has computers--we need the word 'computer'; and this
word is full of meaning to someone who does programming.
The meaningfulness of the word computer underlies our
proposition that the subtle world has plenty of computers
and this is one of the key parts of the subtle world,
alongside living beings, the muses, and God.
  It is a happiness for a human society to have a vision
of the subtle world, and thus of the universe as a whole;
because this vision is also a map that allows and even
encourages intuition and its wisdom to flow through the
mental processes of this human manifest society. The
vision of the subtle world is utterly more complete given
the presence, the easy, strong presence of the concept of
computers; and so it is a happiness that society has a
presence of computers and programming. And this explains
why there is a sadness with a computerless society: a
society lacking in computers is a society lacking in good
concepts covering the subtle world; its mind-map is in
poor shape. The healing of the mind-map of the world takes



71

place by inviting the technology of computers to be part
of the human society, and allowing programming to be
taught to teens and preteens and post-teens.
  Programming is only programming when it hasn't too many
layers to it. When the layers are so plentiful that the
true mechanical nature of programming, its digital
features, are given a softy touch, it is no longer as
much computer programming as computer 'use'. In other
words, a programming language must involve a sense of the
nude and raw hard core of the computer and not being a
thick sweater around the computer in which the pretense
that it is 'smart' is given an upper hand. The computer as
such is of course neither smart nor stupid just a machine.
The programming language must be a language that is fairly
near the electricity and the patterns of the central
processing unit, and not be any too much an 'application'
that covers up the nature of this processing unit. Each
computer must physically be shaped around one processing
unit rather than a bundle of them to fortify the clarity
with which the computer is indeed a machine rather than
some kind of groupy semi-organism. The CPU in the computer
must be simple in its instruction set and not have a
separate level of instructions that oversees the first
part of instructions.
  The G15 PMN Personal Computer design fulfills all these
design criterions totally and completely. Its design is
such that the G15 PMN Personal Computer can be 'emulated'
on computers with a complex non-elegant CPU type (or even
having a bundle of CPUs), but its real bonus to human
manifest society is when it is run physically on a G15 PMN
computer.

3.6
If you have used any battery-driven mechanical device--in
which many things of it are analog, not merely a computer,



72

--then as the battery gets weaker, so does the whole
device tend to behave a bit like an exhausted animal.
  When you are working on creating a masterpiece from your
own mind, you want the battery of your brain to be at top
charge; you dont want an exhausted state of mind.’t want an exhausted state of mind.
  Why is it so that a great deal of meditation, and also
meditation involving masturbation and porn, can strongly
help recharge the brain's clarity, energy, coherence and
capacity to express itself brilliantly, whereas a brain
that is lacking in sexual activity over several days can
become creatively exhausted?
  The 'why' can be approach from various angles--religous,
metaphysical, physiologial, psychological, and more.
  One take on it is this: the brain couples sexual energy
to fascinating holistic shapes, including those involving
fractal similarities and golden ratios, during a proper
working itself up--alongside the body--to orgasm in such a
visual and rhythmic co-experience.
  I am using complicated words in this part of this
chapter because the conclusion, put in a cut'n'dried form,
sounds slightly absurd, when listened to in a typical 20th
century connotation. It goes like this,
  'those who masturbate better, get smarter'.
  Never mind how absurd it is, it is true. And
masturbation is the beginning of sex, it is a form of sex,
and there is no break in continuity from self-sex as
masturbation into having sex with one or more partners;
and the many exciting middle-grounds include heavy
petting and sex-talk while masturbating together.
  A slightly related theme is this:
  the beautiful shapes of a sexy attractive longlegged
elegant young lady are fascinating to the brain--and in
fact help its coherence--because they are, while
harmonious with themselves, not monotonously repeating
themselves exactly.
  Take a bunch of circles and squares for comparison. It
is a yawn, too obvious.



73

  Take a pair of well-trained smooth buns photographed at
a fascinating angle with light from a good angle. It is
circular yet not the geometric circle. Look at the lines
of her thighs. They are parallel but not the geometric
parallel as in a square or rectangle. Now look at 15 or
20 or 40 photos of the same girl doing good poses, taken
out from a vaster collection; the most tantalizing of the
pictures selected and presented. The girl may in turn
remind you of something in someone you find yourself
powerfully attracted you for the time being.
  Then you move from one such collection to another, and
after half a hour or an hour your brain is full of--what?
Don't just say, 'it's full of porn'. It is full of
tantalizing shapes, living patterns, hinting on harmonies
and resonating in ways that sometimes involve the golden
ratio, sometimes have related, perhaps other forms of
form-simliarities. Which means what?
  It means that the brain is full of a sort of general
capability to perceive: it is full of percepts, with which
it can perceive--anything. Not just girls. It can perceive
itself, its thought processes, the city-life, the books,
--the mind comes blazingly alive by transfiguring its
hormones through beautiful pornography. The best
programmers are also the best pornographs.
  We have earlier on, in this volume, briefly discussed
how the golden ratio, such as in a line that is size 5,
harmoniously relates to a line that is about size 8, in a
way that is pleasing to the eye. This is true when the
lines are beside one another, on top of one another, put
together in a rectangle, or in one way or another related
as part of a more complex pattern.
  In terms of making musical sounds, looking for a golden
ratio is like looking for, at least, two or three sounds
that go really well together without being identical. If,
for instance, you sing one note and you go one octave up,
and sing that note: that is almost the same note all over
again, right? But find the third note in between that is



74

about two-thirds slanted towards one of them, and it may
suddenly be that it is a vibrant chord. A kind of warmth
ripples through it, but gently and with sustained harmony.
A world of just boxes and spheres are analogous to a
soundscape of just the same note at various octaves.
  Our experience of beauty and harmony leaps into being
when we have something that resonates without--to put it
that way--resonating completely or absolutely. We might
put it this way: a chord has in it a kind of potential
lack of resonance. If you could freeze it in time and play
it only for a little while, the waves would seem to go out
of sync--but because of the ratios involve, they come back
into sync quickly; and this is notably more fascinating to
listen to that monotonous perfect symmetry in the waves.
  Now all this is not to say that beauty 'has a formula'.
One may understand this fairly well and spend half an
hour dutifully in front of some porn trying to masturbate
and still make something very other than a masterpiece! :>
  To make great beauty, you must also have detailed
knowledge of particular patterns inside that beauty which,
even though not noticed by most at first, would be noticed
when given time to experience the expression many times.
This detailed knowledge may be itself nothing other than
yet more perceptions of golden ratios required in
such-and-such area; but knowledge it is, all the same.
For instance, to be able to select a really great photo,
an piece of art which is also a photo, from a vast
selection, requires a glancing on many levels at once of
the photos. The ratios must make sense but also the ratios
in the more general sense--in the sense of the harmony of
the whole healthy functionality of the human being or
beings in the photo. Perhaps all levels of all such
functionality, including the high wrists of her feet, can
be described by some use of golden ratio; whatever is the
case, it all has to work together when, as a photographer,
you pick the best of the best photos, and present them.



75

  That many-levelled glancing is also taking place when
the brain/mind is at a highly energetic, highly coherent
level of functioning, sexualized and ready to laugh in a
good-natured way, and purely conceptual questions are
considered--such as programming tasks, or how to elevate
the revenue for a company. It is a fractal glancing, that
perceives wholes within wholes, senses the unfoldment,
tunes into the movement, and have intuitions into how it
is going; and by selecting right at each step, the best
possible unfoldments take place, for sure.

3.7
Earlier in this volume we suggested the playfully absurd
and yet perhaps deeply meaningful thought, that a number
is a way to have sex.
  In music, there is no coming around that numbers can be
used to count--and arrythmically upset--the sense of a
frame of an underlaying rhythm that can be intoxicating.
  In many forms of sex, the sense of the numbers, and most
deeply so when it is about the first numbers after 1, can
shape the sensation powerfully, even overwhelmingly under
certain circumstances.
  Let us, for the sake of stimulating visualization and
insight into how numbers directly pervade emotions, and
affect sex, and may metaphysically be speculated to even
constitute sex, mention some images:
  * 3 tongues meeting.
  * 4 boobs meeting, two pairs touching.
  * 1 finger plus 2 perfectly smooth rounded buttocks.
  * 6 thighs on top of oneself, 3 pairs of thighs.
  * 5 pussies on top of each other.



76

While the happy, highly sexified, expert thinker takes
such noble thoughts into consideration, let me also point
out, in the spirit of clarification, just how broadly this
writer defines 'porn': it includes any human photo that
elevates the joy of a sexualized, enlightened observer.
  In a similar vein, let me clarify also that there may be
a sort of cosmic male poliarity owned by God which is in
tantalizing, energizing contrast to the cosmic female
polarities shared by all his highest creations, his muses,
and humans (esp when muselike), this writer does not
consider that there is any such thing as an 'essential'
male/female division between human beings. Rather, each
and every human being partakes in almost uncountable many
male and female features, processes, energies, aspects.
  This is physiologically mirrored in such fascinating
observations, made by startled scientists as soon as they
begun studying sexuality relative to hormones in human
beings and not trying to whether prove nor disprove any
'binary' theory of genders, that such as testoterone is
common in the erectile and orgasmic state of the clit and
is also the progenitor of male muscles and orgasmic state.
  In terms of enlightened sexuality, it means also that
the girl can also be the penetrator, such as by her cute
foot, by her shoulder, by her clit, etc, while the male
perfectly well be the one who healthily opens to such
sexual penetrations. And so there is an interplay of
what we can call 'physiological geometry' in sexual action
in which it makes absolutely no sense to talk of any one
as 'lesbian' or 'heterosexual' or 'perverse' in any strict
sense. Rather, sex is an orchestra of generally healthy
exploration of human sublime anatomy, with or without
clothes, machinery or animals as elements, with or without
procreation as a result. It is a dance, greater, in a way,
than much of life itself, and certainly more powerful than
the sadness that any death can cause. It is the celebrat-
ion of life by life itself, but has in it a meditation
that goes beyond mere clinging to physical survival of the



77

body into the future. As such, it is does not need any
further drugs or stimuli; although in extremely well-
thought selection and moderation some degree of drugs,
like alcohol or cannabis or mushrooms or whatever, can
provide fascinating variations. (However to begin to
employ drugs routinely and in doses involve a change of
physiology so as to be more suspectible for illnesses;
which is to say drugs must only be a dot over the i,
and not over every i.)
  In a spirit of having a jam session, interweaving themes
of all sorts with a coherent thought but without trying to
push just one or two arguments across, let us look at a
concrete way to sort a small list of numbers, like 1 4 9 2
into 1 2 4 9. The principle can be used with millions of
numbers, if we get it right. We can write such a sorting
routine--here we will use the most elegant shape of all,
which sometimes is efficient and at other times take more
time than other ways of sorting--called, 'bubblesort', and
mentioned earlier in this volume.
  Like the core of the open robotics FCM platform, a
bubblesort of a very practical kind are all part of the
Third Foundation. Now when you start up the TF, the Third
Foundation G15 PMN, you have at once a top set of examples
from which to remind yourself on how to program. I must
confess there are months since I did any prolonged, deep
series of hours of programming, and the most elementary
things had to be refreshed by some glances at TF. I got
around to F:2337 to remind myself of how to make an array
of numbers--by SZ and putting a quote, like , inside a&finish&finish
function definition with =. Then I looked around after
F:1700 or so to remind myself that indeed AY is how to get
stuff out of a list or array, and that brought to mind
that the same two letters in converse sequence, YA, are
used to put stuff into a list.
  I followed up by a couple of SCAN's. That is to say, I
typed in SCAN, and begun looking up definition of AY. The
most lazy way to do this, but which works perfectly, is to



78

type in a blank, the letters AY, and a colon : and press
lineshift. After that, give starting-point F1, and 9999
as amount of cards.
  The PC responds with having found it somewhere in the
first few hundred cards at the F: disk. It suggests, among
other things, that you can type CAR to view it, and I did
so.
  I had, while doing this, the concept of bubble sort in
mind: and looked around until I was satisfied that I had
all the words of the tools at the tip of my tongue, or to
be slightly more precise in this metaphor, at the tip of
my fingers, so that the commands would come quickly to
type in.
  Let us in the next part of this chapter talk us through
the making of such a program. Before we talk it through
together, for us to really share in the thought processes
--which may be this writer later on reading my own
reflections after having forgotten most about what I
wrote--it is of top value to enliven ourselves to the idea
of how a list like 1 3 2 can become 1 2 3 through bubble
sort. Let us try it with a slightly more complicated list
as well.
  Bubble sort idea: begin at the beginning, look at two
and two numbers. Do a check: are these two numbers in ok
sequence? That's a simple yes/no question of a type that a
PC is made to answer. There is but one action to consider:
to swap the sequence when the sequence is not ok. Having
satisfied ourselves, we go just one step ahead in the
list, and look at those two new numbers in the same way.
(That will include one of the two numbers we last looked
at.)
  We go through the list, and we make a note in the margin
as to whether we had to do any swap. That is a yes/no
question after going through the list, or 'doing one loop'
as we call it: did we do any swap now?
  There is one action if we did any swap now, and that's
to get on an do (at least) an other loop.



79

  There is another action if we did no swap in recent
loop, and that is to exit the program and letting the PC
do other things, on the assumption that the list is now
perfectly sorted.
  The words can be shown in these examples:
  1 3 2 => {1 3} 2 => 1 {3 2} => 1 {2 3} => 1 2 3 => done.
  We use here { } to talk about comparison.
  More complicated list, several loops, simplified:
  4 5 9 2 8 => {4 5} 9 2 8 => 4 {5 9} 2 8 => 4 5 {2 9} 8
  => 4 5 2 {8 9} => new loop => {4 5} 2 8 9 => 4 {2 5} 8 9
  .. => new loop => {2 4} 5 8 9 => 2 4 5 8 9 => done.
There was a dogma in the 20th century that bubblesort is
sort of for kindergarten whereas something involving
wizardry called by many 'quicksort' is for adults. Like
many other dogma, they are not necessarily holding up to a
good neopopperian scientific look.
  Just like bubblesort is involving very many loops for
some sequences of numbers, so is ANY routine involving
very many loops for some sequences of numbers. The attempt
to find a 'universal mechanism' is, in this writer's
opinion, depending on intent of mind, either incoherent or
has an almost absurdly simple solution. It is incoherent
if one believes that by adding complexity to the most
elegant, most first-hand, most simple sorting routine in
the world, requiring the least computational electronic
activity and only the simplest of first-hand program
concepts, one will grow towards something more universal.
One may 'optimize' for 'a statistical large portion of
cases': that however is not what 'universal' is about.
To actually sort fast in ALL cases there is something
beyond an algorithm required to structure the algorithm,
confer Goedel's incompleteness thinking and the 'et
cetera' proofs by this writer to reflect along these sorts
of lines.
  Once we abandan the notion that one can build, by
algorithmic complexity, a pathway into infinity, one is



80

left with the question: what happens to be the most first-
hand elegant way? And we are back on the idea of 'bubbles'
of pairs of two and two numbers 'bubbling up' to the
surface (eg, to the last) of the list, again and again,
like sparkling mineral water. It is absurdly simple: and
it remains simple to spell it out on the level of how the
transistors, or mini-transistors, inside a first-hand
simple Central Processing Unit work.
  Only by making second-hand concepts can one create the
apperance, the illusory appearance, that something like
the hierarchically organized socalled 'quicksort' is in
some way 'simple'. Quicksort is not simple and in some
circumstances it is better named slowsort.
  A computer does not, repeat not, offer limitless power.
The very quintessence of the computer is limitation. That
includes limitation on sorting speed. Knowing that, we
build programs. Knowing the fullness of a first-hand
computer structure like G15 PMN, we employ bubblesort,
unless there are particular technical applications that,
in exceptional circumstances, demand squeezing the lemon
of the computer.
  As a next step, building on bubblesort, one can have a
first-hand human organized 'index' method, in which
portions of a larger list can be kept separately on disk,
a sorted partially. However that has to be built by a
first-hand understanding of the typical statistical
structure of the data. For instance, if you have a very
large name list, all sorts of English names, you have good
reason to assume that there will be some degree of
distribution over all the twenty-six letters A..Z. Which
is to say, you can have 26 set of cards, each set capable
of being read in as a chunk and, eg through a separately
stored number index (that indexes the card numbers),
sort those names.
  This situation is quite normal for very long list of
words: it is not that the words themselves are directly
sorted as much that an index of them. It means that



81

instead of comparing two numbers like 3 and 8 you compare
the name that's stored eg in card 3 with the name stored
in card 8.
  For yet longer lists one can have a third level.
  But the smaller programs look the best.
  And bubblesort is a small program.
  Yet, even a small program, as long as it has at least a
handful of actions and features in it, can be shaped in
very many ways, in a language like G15 PMN. In some cases,
we can make the program very small but at the expense of
readability; or we can make it longer (eg by using G15
code directly without going through PMN) so as to make it
faster but at yet more expense of readability; or we can
make it pleasantly long, not too long, but psychologically
meaningfully long, divided into meaningful chunks, so that
we can read it as well as the PC.
  While this may sometimes lead to some more electricity
wasted by the PC at first, we can save in later on in case
we need to use the same program in a different context and
wonder what we the heck we were thinking about when we
wrote it. There is a communication gift into the future to
do first-hand programming. And the TF is made on the
absolute premise to ensure that first-hand programming is
stimulated even as practical applications are made.
  In other words, we are long-term encouraging both
enlightenment, thinking and also efficiency by sticking to
first-hand programming in a first-hand programming
environment, in which optimalization is never used
routinely but only if there are extremely good reasons to
call on it.
  The G15 CPU is designed with this principle in mind.
Nearly all its essential instructions have a sense of
leisure and luxury in their elegant sophistication and
ease with which they operate. There are a few instructions
that are called on very many times every second to do a
whole set of routine tasks in the same sequence each time.
These few instructions could be omitted; but then



82

electricity use would go strongly up and speed would
suffer for every letter you type on such as a B9edit
editor program. The whole paradigm of making the G15 PMN
CPU would have to be altered to give human acceptable
processing speed for all elementary G15 PMN applications
without a couple of these instructions, which bundle a
dozen or more of other instructions into a single
instructions.
  The chief example of this is the G15 command that is
handling the calling of a PMN program from within another
PMN program and the subsequent exiting of that program
again--with room for calling within calling within
calling. Another important example is the command to light
up the pixels on various positions on the screen in
various intensities given a range of numbers beside one
another. And there are some more.
  However, we are still talking less than 300 instructions
and there are no "meta-CPU's" that overlook the CPU. So it
is the simplest CPU possible to relate to practical
electronics, practical mini-transistor speed, at practical
temperatures, allowing first-hand programs to get the
human interactors a whole range of eminently useful first-
hand applications--as well as full capability to further
develop and refine these applications. The G15 CPU is
made to serve humans, to serve the human mind--at all
levels, also spiritually. And it is an expression of a
philosophy of the infinite as constituting ingredience of
the finite.
  When we use bubblesort to sort a list, an array, let us
remember that we have our hands on something that can be
used to sort things with more dimensions as well. Put
simply, you get a matrix by having several arrays after
one another. Yet another dimension, by having several
matrices after one another. Yet another dimension, by
having several such 3-dimensional matrices after one
another. The fifth dimension: several 4-dimensional
matrices after one another. The sixth dimension: several



83

5-dimensional matrices after one another. Which again is
one giant list.
  Technically, one can argue the point that the universe
is but one giant list, given a context where something of
list is interpreted by something around the list as
algorithms while something else around the list is alive.
  In this philosophical perspective, one can, in a similar
vein, argue that bubblesort is perception. Bubblesort is
getting sorted out what you just saw.
  Have you noticed how, after travelling much, fiesting
much, sleeping not enough--some days later, having
restored rhythm, restored sleep patterns, gotten into good
habits again, got enough masturbation, exercise, baths,
work, vitamins, ginseng, maca, whatever--the mind attains
the glow of having 'sorted it all'? Sleep takes time; so
does bubblesort (sometimes). The glow of clarity means
that you are able to make decision: you might say, the
time between the observations and the insight involves
having your subconscious mind 'work on it'. It delivers
results. Effortlessly available, some days later, are
insights into what you experienced some days before: which
can lead to really important new developments, new action
paths, and open up new avenues of intuition.

3.8
Concrete bubblesort in the next part of this chapter!
  The next volume, volume 3 in this 5-volume series, G15
PMN Pattern Matching, takes the idea of a matrix (many
lists of numbers beside one another, for instance holding
line-by-line all info in a black'n'green photo of girls)
further in that we'd like two matrices to be compared in
an approximate way that allows for shifting much around
in one matrix without loosing the comparison with the



84

similar patterns in another. This is the sort of stuff a
robot needs to avoid collision into a table if it is to
pick up a plate to carry it away and wash it. This sort
of thing is part of the field we call First-Hand
Computerized Mentality, or FCM, and it builds on the core
FCM modules already inside the Third Foundation you may
know fairly well already.
  FCM uses sort, usually bubblesort, all the time, at
least potentially. The bubblesort it typically uses is the
one inbuilt into the TF. In the next volume, we'll build a
rock-solid way for the PC to pick out some general
patterns out of a full-fledged photo of the type a camera
can provide and which is stored in the G15 PMN Gem format,
accessible through the GEM Image editor that is part of
the core set of G15 PMN applications at the G:15 Home
Screen. The app in its full form, with all the completed
elements, working--and tested--even if they would be in
need of a bit of optimalization here and there to be used
in practise, inside a robot--is actually built while the
volume 3 is being written: that is my plan, while now
unfolding the volume 2. The point is not to include
everything in the app inside the book--it's too much
code to be pleasantly shown inside a book of such a side
without squeezing away very many interesting discussions
along the lines we have begun in this Art of Thinking
series--but it is to ensure that the text reflects the
questions, feelings, musings, alternatives that actually
goes into making a really fairly huge app, instead of
being merely a commentary around something that is listed
on the G15 PMN app pages on the net long after it is made
(when perhaps some of the original ideas are forgotten).
  Pattern matching is a valuable programming task also to
call on further mediation on the nature of perception in
ourselves. The universe may be a giant list of numbers in
the sense of a good deal of dimensions and a very vast
structure, and some of it may have an algorithmic
interpretation, but there is also life and its living



85

attention, mindfulness, feeling in what is beyond those
numbers, and that means beings, muses and God. Ultimately,
an algorithm, no matter how cleverly made, can never pick
out all that should be picked out of a situation, because
that would involve an infinity beyond the principal
capacity of any machine. But the life around those numbers
infuse the universe with something that can arrange things
so that what should be seen, will be seen. It is in this
light that this writer uses the word 'synchronicity'.
  Pattern matching on a computer can therefore be seen as
an exploration in the "brain" (or "matter") side of
living pattern recognition, whereas studies of conceptual
infinity in philosophy can be seen as an exploration of
the "mind" side of living pattern recognition. This need
not be any 'duality': the brain/mind distinction, which
parallels the pattern matching algorithm/pattern
recognition distinction, may go on and on at finer and
finer levels, including yet more subtle computers all the
way through the levels where the muses exist, all the way
to God's own level, who is the ultimate source of all
living attention (in one essay I called God the giant
Uncomputer).
  As I believe I have suggested earlier in this volume, it
is a pleasant thing for an infinite being to visualize a
computer and infuse it with a capacity to run a variety of
programs. The instant it is imagined it exists, borne of
the fluid essence of God in his untouched ineffable
essence. The program is conjured up, and God visualizes
his visualized program move towards the visualized PC and
the spectacle unfolds on the display. To keep things
simple, he uses such as a ten-number system, and numbers
smaller than that, which means a 32-bit computer.
  He plays with it and he makes some swirling galaxy like
graphical images. It appears to him that if the galaxy is
actually going to have anything in it, and not merely be
a nice picture, he must either go into boringly long
numbers, or he must have many computers. That seems a more



86

easy solution: he imagines the many computers, and
imagines that they are connected by a nice bright green
lucid wire and have some controlling computers with a
controlling set of programs to handle their communication.
  Good, but as he zooms into the galaxy even this series
of computers don't provide much of detail as to what is
inside a solar system--it is but a dot in the distance.
  On reflection, he visualizes several levels of computers
--hierarchically collaborating--and with hierarchically
organizing programs given to some of the computers--and
suddenly he finds that he can do a lot more faster, and
even 'land' on a planet and, by some more visualization of
yet more computers and suitable fractal-like programs, get
along to see some plant-like stuff on one of them.
  Then, we can surmise, he dozes off, happy after this
first little experiment.
  It appears to him he should have a staff to do this. How
many levels are enough levels? Who knows? If he is to have
any fun, and fun is what he wants, he needs some muses.
  Bringing back the first visualization, he gives
attention to the first being, the first muse. He tries out
this and that, having her visualized on the most beautiful
spot on the most beautiful planet in his first experiment,
keeping his hierarchy of computers summing.
  He is trying to find a shape of her, his first muse,
Athina, and imagines a female counterpart of how he has
often liked to think of himself, with two legs and ten
fingers and so on, and long thighs. He want her to be like
a slender little thing he can take in his arms. So he
makes a version of himself as well on that planet. The
Greek myths has it that Zeus created his beings out of his
thighs, and whether God actually visualized that he sort
shook these computers out of his visualized thighs only
God knows. In modern English, the word 'muse' fits better
than the often-used word 'goddess' for the females he
creates--and those who use the word 'goddess' give a much
smaller role to the word 'muse'; beside the have many



87

other often contradictory stories about these beings and
their actions and emotions and genders. I do not pretend
to render them at all. This is all fresh from self.
  Anyway, he takes pains not merely to get the shape
right, but to get the movements fascinating. He moves
around on that planet in a way that exudes some strength
and some degree of robust energy and tallness. Athina is a
graceful elegant dancing being but who can suddenly stand
firm and insist on something, and look up with her young
fresh perfect face into his own more complex, older face,
with sweet demand.
  Again, we might think, at this point he dozes off and
ponders on his next moves.
  For sure, he senses excitement at Athina, he has never
visualized anything that compelling to him after he
discovered that he liked to visualize his own form. And
she is intoxicatingly attractive. For several weeks, he
finds that he want nothing but to walk on the planet and
explore its nooks and trees and light little fires and
eat little meals--a novel invention--with Athina, and her
her opinions.
  He explains to her--he has got around any initial
objection he might have had to avoid infusing her with
something of his real mind--a bit of tricky visualization,
in which something of the computer has to suddenly yield
to his attention rather than continue its program--and yet
she is registering, through the computers, the very very
very many computers at many levels giving her a mentality,
sort of in a FCM sense, but vaster--what goes through her,
also algorithmically. He finds that he is, in a way,
making a female version of himself, but assisted by a
structure that comes through a lot of fascination with
permutation of numbers in an algorithmic fashion.
  By the way, the word 'algorithm' refers to the name of
an Arab who worked with procedural handling of numbers,
and whose name shared something of the first letters in
that word--and his name again begun with 'Al', which in



88

the Arab language of course refers to God. It sort of ties
in with the myth we are weaving right now.
  He finds that Athina gives him something new, a sense of
mirror that is much more than a mirror and something which
is in a way, if not better than himself, something he, as
a result of giving himself a more energy-oriented, more
robust, more rugged, more complex form, yearn towards
seeing: it complements the view he has of himself, and
since he has a preferred view of himself, he develops a
yearning, a love, for Athina, who drinks in the power he
bestows on her, as the many levels of computers also keep
gathering in quantity and in elegance in their programs,
to accomodate all the experiences of love he wishes to
have between himself, on that planet, and on other planets
--they build a ship--and Athina. All the time he is
watching it from the outside, but he feels that he can do
the same with the version of himself inside the
visualization as he can with Athina: namely to infuse
himself into himself, as it were, and let the computers
help the registration of all that goes through the
mentality.
  In that way, he is both inside his creation and he is
also watching the creation, being the ultimate sustainer
of all. And the love becomes sex, and Athina suggests to
him: let us give birth to new beings. He objects that it
becomes too complex, but she has a way. In the ship he has
already put a computer--visualized inside the computers--
in other words a sort of 'virtual' computer. And, at
Athina's sweet bidding, with her pouting lips, standing
on tip-toe to kiss her man, God, he has explained as much
as he can find words for as to how he has created her.
  She suggests, do it over again, but do it inside this
creation.
  God, feeling impressed by this, is yet uncertain. Why,
he asks. Yet another set of planets?
  No, she says. So that we can see ourselves in those new
levels and together with her sisters, Lisa and Helena. We



89

can lean back, Athina explains God, hand-in-hand, and
watch overselves play along with these two lovely beings.
And, Athina says, these are going to look like This! And
like This! (For she has at this time also become a
fabulous artist.)
  And that convinces--Zeus, to use that word. She is
right. It is not just her and him. These two beings really
are--while fascinatingly similar to her--having unique
different types of beauties, and he would love to see them
all three, and he loves the names she gives them. Lisa,
Athina and Helena are soon walking hand-in-hand with Zeus
while Zeus and Athina are watching this on a higher level
with Zeus watching this on a still higher level. The
'levels' are, to use to the modern jargon, the 'virtual
computers'. But the visualization is not merely doing
this algorithmically--in contrast to the usual way the
word 'virtual computer' is used. Instead, Zeus uses his
real mind power--and Athina is very concerned that this is
exactly what he must do, and makes sure he does it well--
to infuse the lower-level Athina and Zeus with actual
non-algorithmic mind power.
  And this also goes for Lisa and Helena. The three muses,
L., A. and H., hand in hand with Zeus, explores a myriad
worlds--and have a myriad forms of orgies. Together,--it
is an almost obvious next step--they create their next
level, put themselves there, and in that next level they
have the trillions of trillions of beautiful children of
all their orgies, the submuses.
  Only at this point it is possible to being to speak of
levels approaching the level of the manifest universe--
by imaginging a suitable number of additional virtual
computers, infused along the way with real God mind-power.
  At the higher levels, things get interesting when it is
clear that more than watching is possible. Of course it is
possible to make some nuanced changes in the structure of
the lower level. And of course this is extremely
entertainining. A lot more about this is developed,



90

including a limited but real way for the trillions of
trillions of muses to move 'beyond' levels, and go back.
There is much more to all this, but that is another set of
tales; this volume is on Art of Thinking in general.
  Let me re-iterate, for those who use the term 'virtual
computer' in a 20th century style, that the myth we here
weaved uses it in a metaphorical sense only: not in a
strict sense at all. This is a computer that is of a
different type, weaved of a different type of energy, and
which--unlike the classical definition in 20th century
terms of a computer--is fluidly response to moment-by-
moment impulses from a living source of attention in a
nonmechanical way.
  This is further explored in my supermodel theory.
* A quick footnote for this chapter is in order:
  Myth first set forth in the 2006 Firth platform by the
same in a scifi tantric manuscript, a very early form of
G15 PMN; and consolidated to a neopopperian theory with
formalism equipped in the Supermodel theory, documented
inside the G15 PMN Third Foundation app, and in a number
of earlier writings by same author in the years in
between; they have learned much from repeated
conversations with David Bohm, first three times in
Birkbeck College, London, then later on in Oslo when a
friend of the writer housed Sarel and David (and dialogue
companions) for a Soria Moria dialogue arranged by S.Bjork
 N.MacLaren under their brand "Forum2000"; a year or two&finish

later, this writer with his friend (Henrik) made, for 3.5
years, a successful academic thinking magazine in Norway;
which was closed some years later, after this writer
begun the development of the computer and writing projects
in New York and other places.)

3.9
Let's do the bubblesort. We need first of all a place to
put some numbers and in a programming language, that means
to define something with a suitable short neutral-



91

sounding meaningful name that isn't already used in the
language; which is to say, a name which isn't already
used in the G15 PMN Third Foundation. Perhaps list1 will
do. Is list1 defined? We type in ^list1 /// exists and
it tells us that it isn't existing and that you are free
to make it.
  How long should the list be? Okay, up to 10 numbers this
time, but another time much bigger. That can be changed
later. 10 it shall be.
  In the Third Foundation app, app# 3,333,333, which we
always assume as foundation for any G15 PMN program unless
we specify a particular variation or extension of it, the
card F:1498 shows the typical way of making any list. A
number is given to SZ, the SiZe, and this is the size of
the list plus some extra space for the program to organize
itself around it. This is stored in a variable. Find a
card, eg on the i: or j: disk, and type in this:
  list1= /// ^. /// 20 /// sz ///  /// list1 /// kl&finish&finish
Whenever we want to use this list, write list1 /// lk and
we are going to use it with AY and YA to look up numbers
in it, and to store numbers in it.
  Note that the dot looks really huge when written in the
proper programming font for G15 PMN. It is easy to
remember to put it in when you use that font, which was
made at the same time as the CPU and the programming
language was fully getting in shape.
  To get anything out of the list, we can write stuff
like 3 /// list1 /// LK /// AY. That gives us the number
in the 3rd pos. To put in 5 to this place, we would write
something like 5 /// 3 /// list1 /// LK /// YA.
  If we want to shorten the phrase, we can do list1 /// LK
and put it to a local variable like i9, by command S9.
  After that, we can write just 5 /// 3 /// i9 /// YA.
  What should we do first? It appears to me a grand idea
to have a function that does the swapping of two positions
when we require it. At the moment I don't recall whether
there is an inbuilt function of this sort, whether in the



92

core G15 or in the G15 PMN TF set. But this is about
thinking, not sparing in a few lines of typing or making
sure it works a second faster for a giant list. So we are
going to make it:
  swapthese= ///
Okay, just a moment. What info do we need as input to this
function? It exists 'in empty space', and it is ready, as
a tool in our toolbox, to do a job for us. But it needs to
have some info about what it is supposed to do. We build
it so it automatically works on our list1, I assume. But
it certainly needs info about which two items to swap.
Right? Let's put these to i1 and i2; and to Set i1 we use
S1 and to Set i2 we use S2. I typically write them in the
opposite sequence, because the stack works on the LIFO
principle, First In, Last Out--the top of the stack is
popped first out, and so goes to i2, then comes i1:
  swapthese= /// s2 /// s1 /// list1 /// s9
Very well. What then? We would like to fetch both of these
values, leave them on the stack, and put them back in the
opposite arrangement. I imagine it is about this:
  swapthese= /// s2 /// s1 /// list1 /// s9
  i1 /// i9 /// ay ///
  i2 /// i9 /// ay ///
  i1 /// i9 /// ya /// i2 /// i9 /// ya.
Seems good to me. The PC will tell us whether we do it
right or not. I will of course have checked with my own PC
right now before I finalize this manuscript, but it is
instructive to put it in, also because the very process of
typing it in and seeing it take form on your own screen in
a different font, and with much space, and use of the
right-column (remember CTR-R to get there precisely when
using the CAR editor), means that you get much learning
to the brain; and the art of thinking includes also fields
like the art of learning and art of recalling.
  Get therefore these things into eg the second card,
right after the definition of list1.



93

  I took a pause and, before I started writing again, had
a look around in the region of card f:1111 in the TF. That
area is good to keep a note of, and it is easy to remember
too: f:1111. Very simple, right? Before and after that
place a neat one-line summary of a huge bunch of two-
letter commands are given. Very practical.
  And, if you wish to increase the speed of our little
program as we are now doing, there is also a two-letter
function, IW, that does the same type of thing as we did
before, with our SWAPTHESE. Anything done in G15 is done
'nearer' the electronics and so several times faster than
when the PC does it through its PMN layer on top: but it
is much more humane to do things in PMN so unless the loop
is about millions of iterations, it usually doesn't
matter.
  By the way, what is the best way to actually record new
data in the brain, and in the mind? How make sure it is
getting into the brain in a way that can be recalled? The
rules of thumb are,
  * talk about it--even if only privately inside your
thought--don't merely look at it; say, 'the f1111 is a
good place with lots of overview, I will remember the
f1111, it is the most obvious place for an overview', or
something like that.
  * visualize it. If you need a long-term visualization of
a number, make a story of each digit or digit series,
going from digit or digit series to an image and weave
some kind of funny interaction between the images. Just
what images is a question of 'getting acquainted with' the
numbers and see what images feel right or deliberately
construct ones according to some scheme that makes good
sense (but stick to positive images; they can be sexual)
  * don't talk about other things while you are trying to
record one thing
  * muse on it (rather than rush over it)
  * do it again, several times, if you can



94

  * do it in a pleasant, easy, light mood, if you can
(alpha waves, right?)

Anyway, we're going on. Let's do the next card. In it we
might have the very bubblesort loop itself. However it
may be we want to divide it up later and in case we copy
some cards 'to the right' and type in some new stuff here.
Let us think. We want a loop that continues until some-
thing is done.
  I got an idea, if you don't mind adding something to
card above. This shows how programming works. Going back
and forth. Why don't we have a neat little variable made
before we have the SWAPTHESE function, a variable that
goes about like this:
  didaswap= /// ^.
This can be set to DANCE or BASIS, our pmn-like words for
talking about 'yes' or 'no', or 1 or 0. What we want: The
variable, when correctly used, can tell us whether a
swap has been done, it answers the question, 'did a swap?'
  We will set it to BASIS at the start of each loop, with
the word BASISTHIS. Then we let our SWAPTHESE set it to
DANCE, with DANCETHIS. Okay? In that way, when we call
SWAPTHESE from the main loop, we also get the little
marker we want to find out whether the sorting is complete
or not. Right? So I copy the above definition and throw in
something extra in it:
  swapthese= /// s2 /// s1 /// list1 /// s9
  i1 /// i9 /// ay ///
  i2 /// i9 /// ay ///
  i1 /// i9 /// ya /// i2 /// i9 /// ya
  didaswap /// dancethis.

If you have time to have a look at the making of these
PMN functions, you'll find them, in TF, at F:1991, and
onwards. You can also scan for them, and if the word you
put in is found other places also, type MMM to get to each
next place and CAR after that (each time you type CAR



95

inside TF, it expects you to press either the letter Q or
the space bar to signal whether to quit or go on viewing).

By the way, the /// means it has got to be on a new line,
whereas when I shift line in the above, that's just a
matter of how I conveniently write it within this text.
Also, when I put in a lineshift after a word or number in
this text, whether or not I write /// at the end of that
line, it must be a lineshift also in the program card.
And the fact that we have that many ///'s now means that
the swapthese= definition goes over no less than two
cards. Format it the way you like, you have two rows of
eight lines on each card and it should look good to you.
A function can in principle go over even as many as dozens
of cards (though for reasons of clarity, the usual
approach is to keep the quantity of cards in each
function rather small and rather have more functions).

When we are going to check whether it is 1 or 0 we could
eg call on the function 'SE', which does next line (or,
if that line is blank, next line that isn't blank, whether
in this or in the next card--though for clarity, usually
best to have it immediately underneath the SE)--SE does
next line when and only when the input to SE is DANCE. To
get the value out of the variable, we do this:
  didaswap /// lk
In order to use it to exit the loop, we could do something
like this:
  didaswap /// lk /// se /// q1
The Q1 in this case requires a bit explanation if you
haven't met it before in this situation--inside a loop.
Let me sketch how the loop roughly goes:
  ourbsort= /// ll:1 ///
  |do something
  didaswap /// lk /// se /// q1 /// lo.
Now the LL:1 sets up a loop to loop just 1 time. But the
Q1 is funny because it reduces the value of the loop



96

counter by 1, so it gets zero again, and the loop keeps
going. Let us muse over why.
  Q1, like S1, changes the main loop counter, i1 (I write
the 'i' letter small to not confuse with lowercsase L
right now). We can print ten numbers out like this:
  anexample= /// ll:10 /// i1 /// nn /// lo.
So you see, the LL naturally affects i1. The loop stops
after ten numbers have been shown on the screen. LO is the
lower part of the loop, from there it jumps up again--
unless the counter has reached its top value. In that
example, the top value is 10. If you write LL:1 instead
of LL:10 it will just loop once.
  But if you put in Q1, it may loop a lot lot more. So we
have SE in front of Q1, meaning that have a loop until
a condition is 'satisifed'. Got it? A tricky little thing
to explain in words, but it is just a number play, and
if you find time to make many loops and try out various
ways--and there are many!--to modify the index counter,
you'll learn by trying out variations. And in some cases,
of course, you must reboot the computer: such as if the
loop got too big. Rebooting the PC is every programmer's
dignified pride. Just don't aim at it, because it is a
lot more time-consuming that exiting a program normally
and restarting it :>

We seem to be getting somewhere with the program. Let us
look back to where it says, as a comment,   |do something
(more here). That comment is merely meant to say to us, we
are doing the program partially, the rest is 'program
description', the intended program. It is not necessary
to type in such comments. The comments we should leave
inside the program should be extremely to the point and
not make a song out of it, because it can be very
distracting, when you are trying to correct a program with
a subtle confusion in it, if the code has to compete with
comments that are pompeous, dramatic or some kind of
flawless poetry or fascinating like a detective novel. As



97

a rule, a comment should be there only to clear up the
most significant of confusions for the expert programmer:
all else should be readable from the code itself, and
that includes the names of the functions and variables.
Yet sometimes these names are misleading, in that their
actual work inside the program are different than the
name given by the programmer, and that is a sort of thing
that can delay the spotting of what to fix when you are in
program correction mode.
  G15 PMN programs are often quick to fix also because the
presence of the i1, i2, i3, up to i9 and ix, and the j1,
j2, j3, up to j9 and jx, are intensely used inside many
functions and these have neutral names. Another reason is
more philosophical: G15 PMN doesn't do things as much in
terms of 'cause-effect' words as it could. Rather, it
suggests looking at a program as a pattern (indeed, one of
the early intended meanings with the three letters p, m
and n, involved pattern and matching and networks).

Well, let's get it done, this bubblesort of ours.
  What seems to me to be called for is that we get into
the main loop something roughly like this:
  ... list1 /// lk /// ay ... list1 /// lk /// ay /// ...
  ... se /// ... swapthese
Except for one thing: swapthese must get some input,
namely two numbers, and so we need something like D3 in
front of it. (As G15 PMN program texts tell, any statement
where you use SE can be converted into a statement where
you use D2, D3 and the like, if you 'negate' the input. If
you use 'greater than' as input to SE, use 'less than or
equal' as input to eg D3. If you use 'greater than or
equal' as input to SE, use 'less than' as input to D3. The
conversion goes like this: GE <=> LT, GT <=> LE.)
  What we want, in other words, is to pick one element, an
the next, and we want to compare these, and SEe the result
of that comparison. In the case that these are out of
order, get them into order, by swapping these. Right? Hm.



98

  The three dots in our case reflect our thinking. If you
have a fast hand with a keyboard, you're in luck if you
are going to make a program: talk to yourself, while
writing it out like it did, ask questions and read your
own questions and ask more or answer them. Have a dialogue
with yourself. That is touching on the highest form of the
art of thinking.
  The ten positions are given by i1. Let us now muse over
whether we got the limits right. These things are some-
times creating issues when we overlook them. When you make
a list of ten numbers, are you going to put them in pos#1
to pos#10, or--as an alternative--are you going to put
them in pos#0 to pos#9? Remember we set aside 10 positions
in the earlier card, where we used SZ, in setting up the
LIST1. A good rule of thumb is to give it some more extra
positions than we need. In that way, we don't have to
worry whether it is #0 to #9 or #1 to #11.
  Nevertheless, let us use position #0 to #9, and keep
that card unchanged. That means that we compare i1 minus
1, and i1, as far as positions goes (for i1 starts at 1).
There is a two-letter word that gives us i1 minus 1 and
it is M1. And the two-letter word that gives us i1 plus 1
is F1.
  Let us again put LIST1 /// AY into i9.
  Given that, we have something like M1 /// i9 /// AY,
followed by i1 /// i9 /// AY.
  Right? And the former is supposed to be smallest. If it
is equal it is okay enough. It is bigger we are supposed
to get on to do the SWAPTHESE. The word to figure out
whether it is bigger is GT. We would have something like
this, LT /// D3 /// M1 /// i1 /// SWAPTHESE, since we
convert GT <=> LT when we go from SE to D3.
To say something that is of value to record and keep in
mind during G15 PMN programming: i1 in one function
belongs to that function. i1 in another function belongs
to that function. These two variables don't overlap across
functions. They are, to use a phrase for it, 'local' to



99

each function. If you want a variable to be shared across
functions, do as we did with LIST1 and DIDASWAP: give them
names of three letters or more, new names, names that you
check, carefully, that haven't been used in TF already.
(That's a rule of thumb; there are always more ways of
doing anything, including how to get functions to share
variables.)
  The beauty of local variables like i1 and j1 is that
each function can patiently spend time on getting that
handling of those local variables right without you as the
programmer handling them having to watch all how all other
functions do their i1 and j1.
  However, when we want these suddenly shared a bit, we
need to put them on the stack. So we are going to put them
on the stack: in this case, it is i1 minus 1, and i1
itself. That's why we write M1 /// i1 /// SWAPTHESE.
  I now see what I could have seen at once, namely that as
we are in this case always swapping two beside one
another, we could have just given the first one and let
the function add up one itself. Yet sometimes there is a
sense of soul in keeping things the way they were first
thought even if it is minutely less efficient. That would
be measurable perhaps in a scale like microseconds in this
case, when it comes to how fast the PC sorts our lists.
  We are going to have one more part of this chapter,
after we next give our bubblesort in finished form, and
that is a routine to conjure up ten numbers freely, show
them, push them through the new bubble sort we have made,
and show the finished list; and in a way that allows us to
repeat it easily. It will be a way to check the program,
and it is also a bit instructive in itself.
  The way I myself went from the lines above to make the
full program next was to gather the lines above and have
a cool look at them. I began thinking about how it ever
gets to count up to compare all the numbers--it should
could up to 9 or something to compare all the numbers.



100

  This is a call for what is named "nested loops"--a loop
can "nestle" inside another loop. In such a case, we use
i2 rather than i1, and m2 rather than m1. For instance,
if we wish the PC to print out the numbers one to five
three times, we can do something like this:
  threeloops= ///
  ll:3 ///
    ll:5 ///
    i2 /// nn ///
    lo ///
  lo.
I added here a lot of lineshifts and indents for dramatic
effect. With each LL there must be an LO, okay? Otherwise
the function won't even be defined, but the PC will tell,
'hey, have a look at this'.
  I guess we got it now (I do this quickly so the line-
shifts will be a bit messy but it should make sense; after
all, this is a way of writing that is supposed to work
well in prose while not being the entire strict way to
list program cards as we can also do, eg in next chapter).
  list1= /// ^. /// 20 /// sz ///  /// list1 /// kl&finish&finish

  didaswap= /// ^.

  swapthese= /// s2 /// s1 /// list1 /// s9
  i1 /// i9 /// ay ///
  i2 /// i9 /// ay ///
  i1 /// i9 /// ya /// i2 /// i9 /// ya
  didaswap /// dancethis.

  ourbsort= /// list1 /// lk /// s9 ///
  ll:1 /// didaswap /// basisthis ///
  ll:9 /// m2 /// i9 /// ay ///
  i2 /// i9 /// ay ///
  lt /// d3 /// m1 /// i1 /// swapthese ///
  lo /// didaswap /// lk /// se /// q1 /// lo.



101

The PC will attempt to do exactly what you write. If the
'lk' is ommitted after 'list1', it will do something that
may cause it to reboot. Smile when it does it, and fix the
program. Don't aim at getting it right the first time.
Even if you have programmed for a thousand hours in
previous years, a simple program can baffle you; let it!
  A beauty of the programming process is that the PC does
not even begin to try to guess on our intentions, and that
is a tremendous sharpening of our own minds: you will know
that if it doesn't act as intended, it is because our
intentions were not exactly, completely enough expressed
on its terms--nothing else. It wasn't because you smiled
too little: it wasn't because you called the PC by a bad
name the other day: it was because you just needed to give
the program a little more thought. So the PC is a fabulous
instrument, when the programming language is relentlessly
demanding on your mind and never swooshy or corrupt or
cloudy about it--to cleanse your own mind. You get into a
meditative state because this is a sort of impersonal
beauty. It is a blank canvas. But a very particular kind
of canvas, the algorithmic sort.
  By the way, if you should add any comment to the above
list, it ought to point out that the positions are 0 to 9
in the list. To get a comment right, it must be no wider
than the program words can be in a column, and begin with
the commentary sign, the vertical bar, '|'.
  Eg, |Pos: 0->9
Also, be sure a comment doesn't stop with any highly
significant special sign like a dot or a  or a ^--ideally&finish
it should not even contain any of the most significant
signs. In that way, the comment stands out as human-only
readable; and you are sure it is not triggering a process
in the PC to try to parse the letters as a program bit.



102

* Quick Footnote:
The PMN you type in, how does the PC handle it? Where is
it checked, processed--"parsed" as we say? Answer is that
that is code in G15 which is in the first few hundred
cards in F when you start the TF. And whatever higher-
level PMN definitions that are between those cards and
your program, higher up in TF.
  Well, how does the PC parse the G15 code from those
cards?
  Answer, that's a bunch of numbers it loads from disk
during boot-up, written and put in as number-data by this
author some time earlier.
  This bunch of numbers tells the G15 CPU how to convert
the human-readable G15 text code into its own proper
instruction numbers. It's a fairly simple bit of code.
  Granted, but how come the PC looks up anything at the
disk during start-up? Where's the program to do that?
  That's part of the G15 PMN PC hardware electronics: it
is hard-wired into it, that the PC should fetch a bunch
of cards from the socalled A: and B: disks. These disks
are only used for such startup-purposes. The disks C: and
all the way up to L: are for programs and data, incl.apps.



103

3.10
Some programs are hard to check well, and yet definitely
require good checking. I once typed in a supposedly fast
sort algorithm from a big book about algorithms. The
programm sorted both 10 and 100 numbers well. But when I
checked it for 10,000 numbers, it had odd mistakes in it.
It was like right for 9,950 of these numbers. I re-checked
my typing, but I had typed in correctly. It was a
complicated little thing to correct, which the authors of
the book had overlooked. This, however, illustrates
something that programmers often encounter, and which is
part of the art of thinking: that there is a huge
difference between 'fairly' and 'completely' when it comes
to the question of correct programs. And only programs
that are beautiful and elegant are worthy of being called
"first-hand" programs, and deserving of going through that
extra test which is your own artistic judgement of it.
  I believe the experience of the big distinction between
programs that are correct, and programs that are nearly
correct, gives us a kind of light that shines in on our
daily life language as well. A programmer is more careful
to use words of a statistical or 'probabalistic' nature,
such as, "It's probable, given such and such, that such
and such is the case,", or, "With likelihood, we'll see
the same pattern tomorrow." And only someone who has a
good relationship to probabilities can find out how to
work with logic and intuition hand in hand.
  Moreoever, in programming through levels of algorithms,
set up in a network or matrix, and in which programs are
engaging in such as pattern matching from input from
camera, the 'probababalistic' type of language gets even
into the program. For instance, when is a squarish area on
the screen, which comes from a camera filming what's in
front of a robot in search for a box, evidence that a box
has been found? The squerish area may turn out to be a



104

a piece of paper with a drawing of a square on it, rather
than a three-dimensional box object. The robot may have to
move a little bit to gather up "more probabilities".
  The FCM programming framework as included in G15 PMN TF
has been very well tested and found to be good; it is also
excitingly simple, compared to the extremely wide range of
possible applications for it. In the next and completing
chapter of this book, we list all the cards, less than
200 cards, which comprise the FCM framework. In the next
volume, we put it to a first use as far as this book is
concerned--and go through parts of an app that was written
especially so as to get some work done in the area of
pattern matching in this book; an app that, after the
publication of Volume 3, is one of the core apps always
available with G15 PMN.
  We'll soon check our bubble program, further on in this
chapter. But first some more notes on program correction.
  As said already:
  A program that is only fairly correct is having a very
different feel to it, relative to a program that is
completely correct. A program that is to be used only once
and then dropped can be fairly correct and it would be
a meaningless form of perfectionism to get it completely
correct. But a program that is meant to illustrate the
art of thinking, or be a crystal of thought that a teacher
presents to pupils for them to meditate on, or to be a
function inside a larger program, a function that may be
called on a vast number of times, ought to be completely
correct.
  But how do we know, for sure, that a program is fully
correct? The reality is that absolute sureness isn't
something we have. We can regard it as likely, as probable
that a program is entirely correct. We can increase that
likelihood by pushing the program in testing, and by
looking at it--and especially if the program is easy to
look at, we can arrive at a great deal of certainty.
  What if the program doesn't work in one test? Is that a



105

sure signal that it isn't fully correct? Not entirely sure
in that direction either: because it may be that the
testing has an issue about it; or that the PC had one of
those (very) rare occurrencies in which it didn't do as
instructed to do.
  To be sure a program needs correction, if it isn't
obvious from looking at the program, you would typically
want to repeat a situation in which the program doesn't
work out, and get repeated confirmations that something is
amiss with it.
  When a program is made out of beautiful, small functions
--each checked and found to be pretty good, and even when
pressed the program seems to be good, you are building a
confidence that the program is absolutely correct. But it
doesn't make full sense to say that you are absolutely
sure that it is absolutely correct. You are somewhat sure
that it is absolutely correct, which is a lot better than
to be absolutely sure that it is absolutely correct.
  The reason I spend some time on this point is that the
art of thinking flows best in a person who have for some
time cultivated a subtle precision in his or her language
use relative to facts. It is about such things as getting
used to say 'probable' and 'likely' when you wish to
leave room for other interpretations of the events.
  Imagine that some person describes the interaction
between two other persons to you, in which one person
comes in a bad light. Surely it is better if that
description has phrases like, '..and it seemed to me that
A tried to do such and such..', rather than phrases like,
'..and A tried to do such and such.' Put in the extra care
in normal daily life language use, and you are generous to
the possibility that you misunderstood; and that other
people have more information to bring on the matter.
  In contrast, imagine someone who always uses words like,
"I am absolutely sure that..", "..it is necessary that..",
"..it must be so that..", and so on. Such a person comes
across as dogmatic and manipulative, and probably existing



106

in a state of near-hysteria. If one has never met this
person before, one will perhaps listen attentively. But
eventually, once it dawns upon you that the person is
sticking to using that sort of words most of the time,
one automatically assumes that the person is inflating the
words, and that one cannot really map reality correctly by
listening any too carefully to this neurotic individual.
  To lay the ground for handling complex social
interactions--when thinking becomes dialogue, conversation
and, in some cases, with some, perhaps also conflict--
one need to not inflate words and not over-state
certainties (nor hide them needlessly). In nurturing a
balanced relationship to facts through one's language, one
will be equipped also to handle a situation in which two
people's priorities seem to clash and variations of
interpretations of facts--and the 'narratives' of facdt--
may be components of the clash.
  I am not saying that someone who is having a good
relationship to facts, and who is used to using language
carefully so as to seek out what is more certain and
distinguish it from what is less certain, cannot ever have
a conflict with someone else; and also, I am not saying
that full honesty is always the right tool; just as I am
not saying that passifism can always be the best way to
meet something, someone who is violent. But someone who is
concealing fact from herself or himself is more likely to
be seriously confused in a conflict situation. If facts
have to be concealed to solve a severe crisis and get it
to become much less serious, so be it. If lying is the
pathway to a temporary harmony that later on can become a
more real harmony, lying is the ethical pathway to go. But
someone who is lying inside thought cannot make clear
decisions about this sort of thing. To live in a state of
constant lying is a neurotic way of living in which the
art of thinking is not flourishing. Someone who is doing
the art of thinking can call on the twisted language use
as a tool to achieve an effect, just as violence can in



107

some specific cases be the appropriate response: but this
is very different from being a violent person in general.
  The art of thinking requires a harmonious sensitivity
that in general is most compatible with a tranquil way of
living, in which loving-kindness and factualness are
cultivated; in which language use is careful and as
objective as can be; and in which silence is the preferred
mode relative to some person's insistence on twisted
expressions--unless there are larger priorities of
upcoming collaboration that demands a union of
understanding. If practical collaboration is required,
some misunderstandings must be cleared up, even at the
expense of loud-mouthed conflict. But the art of thinking
will generally guide a person from moving out of
situations in which loud-mouthed conflicts are the rule of
the day. Of course, this depends on the person living in a
society which has some promise of harmony in it, and is
not entwined to living or working with people who are
thoroughly disharmonious inside.
  How do you nurture harmony, if your mind feels to be
often at the breaking-point?
  The most simple advice (which does not always work) is
to feed the mind more harmony--of all kinds--and let the
body express something harmonious--of several kinds--in
daily life. Add to this the advice to engage in longer
walks, longer and better sleep, with harmonious music in
the background perhaps, and good cleanliness and more
beautiful clothes also perhaps. The yet deeper advice is
also to pray for harmony, for it is a thing beyond the
human level, something that must in a way be granted
rather than 'attained to'; which means paying attention to
spirituality rather than merely assuming the universe is a
machine.
  I assume you do not now feel at the breaking-point and
that you rather want code to check the bubblesort from the
previous part of this chapter.
  We would want to have ten numbers in position #0 to



108

position #9 of LIST1. These ten can vary each time. We
will make a routine to put ten 'free fluctuations'
numbers into the list, show them, sort the list by our
new routine or function, and show them again. By not too
many clicks we want this to be repeated again and again.
Let us see.
  We have the two-letter command AF, "A Free fluctuation
number", which produces a fairly free number each time,
from 1 up to the number given, as long as the number is
fairly small, under 30,000. In some G15 PMN PC's, it
won't make higher numbers than 32,768, which is 2 times
itself 15 times (2 to the power of 15). The Third
Foundation provides a stronger version of this, the RFFG
function. This is a good name for this sort of numbers in
any case--"Relatively Free Fluctuation Number"--for the
numbers aren't really 'free' in any absolute sense. It is
just a sort of messy enough arithmetic hoovering in the
background to provide a rather strong variation of
numbers; and at bootup, the G15 PC has a milliseconds
clock that typically is slightly different, at least, each
time and this number is starting off the RFFG numbers in a
different way (that goes for AF as well).
  You can type like 1000000000 /// RFFG /// NN to check
the idea (that one billion, ie, 1 with 9 0's). It will
give all sorts of different numbers, between 1 and a
billion.
  Got it?
  Therefore:
  varylist1= /// list1 /// lk /// s9 ///
  ll:10 /// 1000000000 /// rffg ///
  m1 /// i9 /// ya /// lo.
Alright?
  And:
  showlist1= /// list1 /// lk /// s9 ///
  ll:10 /// m1 /// i9 /// ay ///
  nn /// lo.



109

Bubble sort check function is therefore--and I give it an
easy-to-type-in name, so we can type it quickly again and
again:
  xxx= /// varylist1 /// showlist1 ///
  ******  pp /// ourbsort /// showlist1.&finish &finish
Done! As a variation, you can put in a screen cleanse, CE,
at the beginning of the routine, if you like.
  Did I try it myself? Yes. The code in this manuscript
SEEMS to me to be ABSOLUTELY correct ;)



110

SPACE FOR YOUR OWN NOTES



111

SPACE FOR YOUR OWN NOTES



112

SPACE FOR YOUR OWN NOTES



113

CHAPTER 4

This is a complete listing of the 179 cards, starting at
F:2231 in G15 PMN Third Foundation, that define the FCM
core and a couple more things associated with that. This
chapter is here so you this is also a handbook when you
program using the FCM core in G15 PMN.
  The FCM core is what we can call a 'framework'. It does
not tell you whether it is for robotics or something else.
It is a way to put in data and what we call 'warps' to
functions in a series of levels, which are performed again
and again; where it is not precluded that these levels
change as a result of performing the functions in these
levels. Each function may or may not use near its place in
the level. Each function may or may not change other data
in the network, in the levels; it may or may not list up
other functions somewhere in the levels; or activate or
passify other functions, or itself. All that is up to you.
  What the FCM core does give is a set of suggested slots
for putting in data and functions and a main routine for
looping through them elegantly.
  Philosophically, "FCM"==Fist-hand Computerized Mentality
is a vast theme, and one which we will never finish
discussing, whether in this book series or in any other
book series in any era. Computationally, it is the
intuition of this writer that it is hard to get anything
more adaptable and fitting for any FCM approach than this.
  This is also a very well-checked core. It is versionless
in the sense that no new versions are planned.
  There are comments between some of the cards. These
comments are only there when it seems to be valuable to
clarify some points, eg about word usage in the cards; in
some cases, the comments we have inserted between the
cards simply explain the terse mini-comment inside a card.
  The robotics program elements discussed in here and



114

there in the upcoming volumes in this five-volume series
will generally be easier to understand when looked at in
connection to an overview like this.
  Good luck with your FCM programming, always!
  The journey begins at F:2231 in G15 PMN TF:

<f2231>
fundnet=       |a tight list
^.             |over all
|make 150*n    |foundries in
|matr by sz,  |use; your fcm&finish&finish
|this can have |app gives ram
|unused parts  |to this; 1st
|of it, for    |x and 1st y
|fcmindex has  |are basis

The word 'fund', the two letters FN, and the longer word
'foundry', all refer to the same kind of thing in FCM:
namely an array possibly having data, possibly having
warps, being organized in a certain way as depicted next.

<f2232>
|fnpos#0:level |#47 qty links
|#1-8:p4g4name |#48 marked as
|#9 has act#?  |highpriority?
|#10-39:3  3  |#49 active?&finish
|n,act#,extnum |#50-149:up to
|ten triplets, |100 links to
|can be array  |funds, called
|#40-46:luxury |on by act's

The chief action of the FCM framework is to sort an index
of all the foundries, or funds, or FNs, or nodes, or
whatever we call it--and the whole thing can be called a
matrix or we can use the fancy word 'network'--and go
through all the foundries, again and again, in a loop
until program signals that is done. To 'go through' is



115

done in the TRANSLUCENT loop, which starts at F:2309, and
what it does is simple, but eminent: when both #9 and #49
are 1 rather than 0, it calls up to ten functions which
are indexed in positions #11, #14, #17, #20, #23, #26,
#29, #32, #35, and #38. These functions are called not
directly by warps, but by socalled "action numbers", which
is written "act#" in the comments, and which is simply a
postion in a list (also called "fnacts") set up in the
initalization of any FCM program.
  As input to these foundry acts is an indication of which
of the ten places it was called from. Whether or not the
function makes use of this input is up to it. The rest is
really all a matter of convenience--we name each three
positions for a "triplet", and assume that the function
may often make use of a number just before, and possibly
also after, its own action number: but these are merely
suggested hints. The programmer has full freedom in what
this is all about. The TRANSLUCENT loop is as simple as
can be. We do not give the programmer a universal kind of
'crack of the nut of Artificial Intelligence' because
there is no such nut and therefore it cannot be cracked.
We simply say, when you wish to program in a way that more
expresses your own human mentality, in which there are
patterns and probabilities and changes of setup during
performance, then here's a framework that lends itself to
such coding.
  That's the background. Now, assuming you understand this
at least in a general way--and for more concrete
understanding, start with the TRANSLUCENT loop in F:2309,
we begin wading through the terse comment in the card just
listed. All this is entirely as in the Third Foundation.

The position 0 in the foundry array is used to store level
number. This is of chief importance. It gives the sorting
sequence for the main FCM loop which is defined in the
main function FCM at F:2315, which calls its main



116

subfunction TRANSLUCENT at F:2309. It is sorted by the
bubblesort BS function during start-up. It is assumed that
it is kept in a sorted sequence and the FCM programmer
must keep this in mind, and be sure that resorting takes
place whenever required. The level numbers may be the same
for a whole set of foundries. Each foundry can have
functions associated with it. In case that these a foundry
is marked as 'active', the functions will be performed.
The sequence within a level of this performance should not
matter. If it does matter, that's a calling for two
different level numbers to be made. Any numbers can be
used as level numbers, as long as they are valid numbers;
and there usually are wide gaps in the use of level
numbers. They should make sense to the programmer.
  A foundry can have a name. This is packed into position
1 to 8. A packing means that four characters are put into
a single big 32-bit number. There are functions that can
quickly pack and unpack a name for the foundries.
  In position 10 to 39 of a foundry we have what we call
"triplets" in a foundry. Each triplet has one possible
reference to a function, and two possible numbers as data
for it. These are sometimes called the triplet's "value",
the triplet's "action number", and the triplet's
"extension value". Instead of storing warps directly to a
function inside the foundries, there is a storing of such
an "action number", which is a simply a number in a list
kept separately. This means that it is easier to put and
retrieve a FCM network (as we can call the whole thing) to
and from the disk (for warp numbers may change from time
to time depending on how the PC is set up; whereas these
action numbers provide a region of predictability).
  There are functions to set up the action numbers as
part of the following cards: see for example fnactcherish
and an example of its use after defintion at F:2400.
  The TRANSLUCENT loop checks #9 and #49. Much of the node
can be used more freer than the comment indicates: for
instance, it is possible to set up a sort of array or



117

matrix spanning the triplets of several nodes (these must
have a correctly set #9).
  The 'links' are typically used when a program is created
to 'entrain' the FCM framework, such as to make a robot
behave in a certain manner given a certain not entirely
precise 'style' of input. A robot should not go on and on
'entraining' itself because then it may mess up the
structure and run afoul; the most ethical way is to have a
phase called 'entrainment' which is strictly controlled by
the programmer or programmers, and to switch off
entrainment--at least for all essential action variations
--when it comes to the normal use of the robot.
  The FCM network can be stored to disk and retrieved as
long as thought goes into the foundry action indexing.
  As part of entrainment program the 'high priority' flag
can be given a role, such as to mark certain nodes as too
important to be changed at all during the performance of
the entrainment program. This can typically be considered
to be the nodes setting the 'highest priorities' of the
robot tasks.

<f2233>
thisfcmnet=    |sort-by-level
^.             |list fcmindex
|This is used  |--it can be
|by fcm main   |changed BY
|routine       |the net when
|translucent,  |done careful
|and it must   |  at start or&finish
|match the     |compl of loop

This is the pointer to the whole FCM network which is
being presently worked on by TRANSLUCENT. Typically, the
level numbers are arranged in this way: the lowest level
numbers have nodes that parse input from keyboard, from
cameras, etc. As we progress higher up, this input has
been structured into patterns.



118

  As we go still higher up, there are task priorities, in
case of an FCM for robots for instance. This suggests, in
terms of the patterns that the FCM is capable of handling,
what the ideal states are, and what general sorts of
actions are to be taken when there is a difference with
the ideal states.
  Beyond this 'middle' or (if we imagine a bowing of the
FCM network) 'top' of the network, we will typically have
patterns of actions, with the highest level of these
actions specifiied first. As we progress along the levels,
the actions get more and more concrete, and are gradually
translated into concrete electrical events such as of
servos and other engines of robots.
  This is a typical, and masterful, layout of the FCM.
  There are additional considerations, and these also
involve the fact that the FCM loop goes through all levels
all the time. In other words, there is an activation,
steered within the FCM, of its own nodes in a meaningful
sequence. And this activation may be so that, in practise,
there are no big tasks initialized, because much
activity must be spend in fine-tuning the pattern
matching. This fine-tuning can involve a variety of
sometimes very complicated activities, such as using
motors to move cameras, and to permute alternative ways
of summing up the matched patterns in terms of different
scenarioes. This is akin to how we may sometimes have to
be active in finding the right interpretation of what we
are seeing: mere passive seeing may not be enough.
  To correctly structure FCM to handle such very
sophisticated algorithmic processes require artful and
skillful programming and much time and experimentation:
but in a billion years, the FCM framework can still be
perfectly well used, because it doesn't limit how this is
done--at all!



119

<f2234>
fcmindex=      |is at pos 0;
^.             |a tight list;
fcmindqty=     |size > 2;
^.             |used by sort,
|this has nums |by levelnum;
|of all funds  |then used by
|in use in the |translucent
|fcmnet; 1st   |main loop

<f2235>
fundlevel=     |This, with eg
^.             |thisfund,
fundlevel      |nextfund,used
basisthis      |during making
|We often use  |of fcm net
|10,20,30  up setfundlevel=&finish
|in organising fundlevel
|foundries !   kl.

<f2236>
nextfund=      thisfund=
^.             ^.

nextfund       thisfund
basisthis      basisthis
|read about    |foundries in
|the meaning   |tf docs via
|of the fcm    |b9edit, h33

<f2237>
fnwarp=        0
|In:number     w
|Gives: warp
|to start of
|the foundry
|of this num   thisfcmnet



120

|in            lk
|thisfcmnet    w9.

<f2238>
fnmainval=     10
|In:number     w
|Gives: the
|first value
|in triplet#1
|in foundry of thisfcmnet
|the number in lk
|thisfcmnet    ww.

<f2239>
setfnmainval=  10
|In:val,fnnum  w
|action: sets
 |first value
|in triplet#1
|in foundry of thisfcmnet
|the fnnum in  lk
|thisfcmnet    yy.

<f2240>
wtofnnum=      thisfcmnet
|In:warp to eg lk
|foundrystart  su
|Gives:fundnum
|Assumes:that  150
|thisfcmnet is
|set;BE SURE:
|get adr right di.

<f2241>
whereisfund=   thisfund
|In:position   lk
|0->149



121

|Gives: warp
|to this pos
|in thisfund   thisfcmnet
               lk
               w9.

<f2242>
adjustfund=    thisfund
|In:newvalue,  lk
|position      |This is 'y',
|Action: sets  |while 'x' is
|'thisfund'    |position ;)
|at position   thisfcmnet
|to value;uses lk
|'thisfcmnet'  yy.

<f2243>
cleansefund=   150
|Action: puts
|basis to the
|150 positions
|in present
|thisfund      0
|in            whereisfund
|thisfcmnet    clrthismany.

<f2244>
makefoundry=   nextfund
|Action:       lk
|Assuming that thisfund
|fundlevel    kl&finish
|nextfund is
|right, sets
|thisfund and  nextfund
|inits fund    danceup



122

<f2245>
|Note that     fundlevel
|some vars     lk
|here are      |The level
|oriented      |is a sort
|towards       |item; the
|construction  |very first!
|of funds      0
cleansefund    adjustfund

<f2246>
1              |When the main
|Status:active |fn loop runs,
|Note:in fn,   |translucent,
|triplets plus |only fcmindex
|luxury can be |  thisfcmnet&finish
|array w/sz 37 |{but not eg
49             |thisfund} is
adjustfund.    |assumed

<f2247>
fnamtx01=      &finish&finish
^.
               |used for
               |putfnam,
               |getfnam &finish
               |wgetfnam
35             fnamtx01
sz             kl

<f2248>
putfnam=       tx
|In:name       |Be sure this-
|Action:it     |fund is set!
|sets name of  jx
|thisfund but  lk
|exits if name |also, no



123

|isn't of len  |spaces in it
|from 3 to 32! s5

<f2249>
i5             n?
3
32

               se

iswithin       ex

<f2250>
32             jx
               up
               fnamtx01
               lk
fnamtx01       up
lk
up             i5
clrthismany    fw

<f2251>
fnamtx01       8
lk
up

               |pack 8-bit to
1              |32-bit
whereisfund    p4.

<f2252>
getfnam=       sx
|In:foundrynum |Copy,eg by tt
|Gives:quote,  |to somewhere



124

|its name;     |if you want
|assumes that  |to keep it;
|thisfcmnet    |quotespace
|is set and    |is
|fund# exists  |fnamtx01

<f2253>
ix             32

fnwarp
up             fnamtx01
               lk
tx             setlenandnil

<f2254>
jx             8
               g4
               |unpack 32bit

fnamtx01       fnamtx01
lk             lk

up             clipniltrail.

<f2255>
wgetfnam=      |the start;
|In:fundwarp   |Copy,eg by tt
|Gives:quote,  |to somewhere
|its name;     |if you want
|uses          |to keep it;
|thisfcmnet;   |quotespace
|the fundwarp  |is
|must be at    |fnamtx01



125

<f2256>
up             32

               fnamtx01
               lk
tx             setlenandnil

<f2257>
jx             8
               g4

fnamtx01       fnamtx01
lk             lk

up             clipniltrail.

<f2258>
fnamw=         tx
|In:name       |be sure name
|Gives:warp    |has no extra
|(or 0) to     |spaces cmprd
|fund w/name   |to original
|{sz 3->32};   jx
|uses nextfund lk
|  thisfcmnet  s9&finish

<f2259>
i9             an
3
32
iswithin       d2

nextfund



126

lk             basis
ye             ex

<f2260>
0              jx
fnwarp         |Note:nextfund
               |shows qty and
               |in this func,
nextfund       |flags aren't
lk             |parsed at all
dc             |Pd for funds:
fnwarp         nf.

<f2261>
fnam=          fnamw
|In:fundname   |Uses nextfund
|Gives:number  |  thisfcmnet;&finish
|Action:gives  |in this func,
|number 0->n   |flags for fn
|of foundry,   |aren't parsed
|or -1 (note!)
|if unfound    sx

<f2262>
|Note:when     d2
|you program   |For speed, at
|a net with    |runtime, fcm
|an arrayfund, |should only
|fnam may make |namefind when
|it easier! :> |important
ix             oneminus
ye             ex



127

<f2263>
ix

wtofnnum.

<f2264>
fnloopcont=    |used by
^.             |translucent;
|'fn' is       |fnact27
|short for
|fund, ie, for |This says:
|foundry       |is main fund
fnloopcont     |loop
dancethis      |continuing?

<f2265>
fnya=          |This uses
|In:num1, pos, |thisfcmnet;
|fnnum         |this assumes
|Action:stores |first pos in
|num1 in the   |array is 1;
|foundry at    |mimicks 'ya';
|position pos  |use fnyay for
|range: 1->37  |range>37

<f2266>
sx             ix
|For speed,    thisfcmnet
|this assumes  lk
|that the      |The 37 are
|range 1->37   |30 tripletnum
|is prechecked |plus the 7



128

9              |luxury nums
ad             yy.

<f2267>
fnay=          |see comments
|In:pos, fnnum |at fnya; also
|Gives: number |note that all
|Action:gets   |fnay,fnya,
|num1 in the   |fnaya,fnyay
|foundry at    |have first
|position pos  |arrayposition
|range: 1->37  |as #1 (not 0)

<f2268>
sx             ix
               thisfcmnet
               lk

9
ad             ww.

<f2269>
fnyay=         |fnya but pos>
|In:num1, pos, |37 fine: make
|fnnum-for-1st |sure enough
|Action:stores |funds {each
|num1 in the   |w/triplets &finish
|foundries at  |luxuries for
|pos 1->n;     |this} are IN
|this is as    |SEQUENCE



129

<f2270>
sx             i5
dc             37
s5             di
               ix
|We use num    ad
|sub one to    |New fnnum;be
|do modulus    |sure sequence
s3             sx

<f2271>
i3             ix
|Ten=first     thisfcmnet
10             lk
i5             |Note: for
37             |arrays 1->37
mo             |size use
               |fnya  fnay&finish
ad             yy.

<f2272>
fnaya=         |been set up
|In:pos {1->n} |so that all
|fnnum-for-1st |ten triplets
|Gives:value   |plus luxury
|at this pos   |nums in them
|when funds w/ |shall serve
|SEQUENTIAL    |as one longer
|fnnums have   |than 37 array

<f2273>
sx             i5
dc             37
s5             di
|Note: for     ix
|compact       ad
|arrays 1->37



130

|size use
|fnya  fnay   sx&finish

<f2274>
10             ix
               thisfcmnet
               lk
i5
37
mo

ad             ww.

<f2275>
fnyy=          |the first
|In:value,     |value of the
|xpos{1->n},   |first triplet
|ypos{1->n},   |must be set
|fundnum       |to x-width of
|Action:as     |the matrix;
|fnya but as a |when>36 items
|matrix; note: |use fnyyx

<f2276>
tx             10
s9             jx
sx             thisfcmnet
               lk

               w9
s5             t1



131

<f2277>
i5             j1

i9             ad
dc

j1             ix
lk
mm             kw.

<f2278>
fnww=          |the first
|In:           |value of the
|xpos{1->n},   |first triplet
|ypos{1->n},   |is assumed to
|fundnum       |be x-width of
|gives: value  |the matrix;
|As fnay but   |when>36 items
|matrix; note: |use fnwwx

<f2279>
tx             10
s9             jx
sx             thisfcmnet
               lk

               w9
               t1

<f2280>
               j1

i9             ad
dc

j1             ix



132

lk
mm             wk.

<f2281>
fnyyx=         |mainval 1st
|In:value,     |fn is xwidth;
|xpos{1->n1},  |37 nums pr fn
|ypos{1->n2},  |in sequence
|fundnum       |but only 36
|Action:as     |nums in 1st;
|fnyay but as  |when<37 items
|matrix; note: |use fnyy

<f2282>
tx             10
               jx
dc             thisfcmnet
s9             lk

sx
|stk:value     ww

<f2283>
|Stk:value,    ad
|x-width       up

i9
mm
               jx
ix             fnyay.



133

<f2284>
fnwwx=         |mainval 1st
|In:           |fn is xwidth;
|xpos{1->n1},  |37 nums pr fn
|ypos{1->n2},  |in sequence
|fundnum       |but only 36
|Gives:value   |nums in 1st;
|as fnaya but  |when<37 items
|matrix; note: |use fnyy

<f2285>
tx             10
               jx
dc             thisfcmnet
s9             lk

sx             ww

<f2286>
|Stk:x-width   ad
               up

i9
mm
               jx
ix             fnaya.

<f2287>
fnactlist=     fnactlist
^.             kl
|Foundry       |most defined
|actions       |in fcm apps
|1->5000       5050
5100           fnactlist



134

sz             lk
             clrthismany&finish&finish

Here you see that Third Foundation G15 PMN with its FCM
framework suggests a normal maximum number of foundry
action numbers. You can use pretty freely within this
range. The way it is defined allows, though, as most
things about G15 PMN FCM, later re-definitions to be
possible without actually having to go in and change
anything in the stable and beautiful G15 PMN TF core.

<f2288>
fnarrayup=     ix
|in:pos,fn#    thisfcmnet
|{fn of type   lk
|fnay  fnya}  w9&finish
|Incs by 1
sx
9
ad             danceup.

<f2289>
fneasy=        |this assumes
|In:mainvalue, |vars fcmindex
|foundryname   |thisfcmnet,
|Action:       |nextfund;uses
|easy way to   |thisfund; the
|make funds    |'mainvalue'
|for a new fcm |is 1st num in
|application;  |triplet#1 :>



135

<f2290>
tx             0
sx             whereisfund
makefoundry
               fcmindqty
               lk
ix             fcmindex
10             lk
adjustfund     ya

<f2291>
fcmindqty
danceup

jx
putfnam.

<f2292>
fneasyact=     |flag about
|In:a b c      |actions
|name          |set to
|Action:       |dance   :>
|as fneasy,    tx
|but with      t3
|full triplet  t2
|#1, and       t1

<f2293>
j1             j3
jx             12
fneasy         adjustfund
|j2 has num
|in actlist
j2             dance



136

11             9
adjustfund     adjustfund.

<f2294>
fnactcherish=  jx
|In:name,num   ff
|Action:stores |This is to
|warp in array |be used while
|Name is of a  |compiling in
|new function  |the fnacts
sx             |only
tx             s5

While you are compiling the fn acts, you typically put in
the name and number of each just-defined function and give
to this function, 'fnactcherish'. It will 'cherish' the
function in the sense of getting it listed as a proper
fnact. See the K-disk for a wealth of both simple and
highly sophsticated examples, also showing how the 'wave/
particular' duality is solved in Super-Model Theory, which
sets forth a scientific (ie, neo-popperian scientific)
formulation inspired by the myth-like thinking we indulged
in, in earlier in this volume and elsewhere. All this is
documented well in the Third Foundation G15 PMN, which
reached its completion in 2016 and 2017.

<f2295>
i5             cl
ye             jx
               pp
               ix
               nn
               ki
               sh
d8             ex



137

<f2296>
|Note: when    i5
|name of new
|func isn't    ix
|found it
|will show the
|num and name  fnactlist
|and wait for  lk
|keypress :>   ya.

<f2297>
fnact27=       |translucent
|In:triplet#,  |loop will
|foundrywarp   |{for now}
|Action:       |exit
|sets the      sh
|fnloopcont    sh
|to basis,     fnloopcont
|so the        basisthis.

<f2298>
|This, then,   fnact27&finish &finish
|is an         27
|example as
|to how your
|fcm app can
|set up new
|triplet
|foundry acts  fnactcherish

<f2299>
fnact251=      sh
|In:triplet#,
|foundrywarp
|Action:
|main value of
|1st foundry



138

|is decreased
|by 1 {is #0}  sh

<f2300>
0
fnmainval

dc
0
setfnmainval.

<f2301>
               fnact251&finish &finish
               251

               fnactcherish

<f2302>
fnact271=      |basis or
|In:triplet#,  |signed; 1st
|foundrywarp   |foundry is
|Action:       |#0; the main
|exits like    |value is the
|#27 but only  |first number
|when main val |in the first
|of 1stfund is |triplet



139

<f2303>
sh             se
sh

0              ex
fnmainval

               fnloopcont
ispro          basisthis.

<f2304>
               fnact271&finish &finish
               271

               fnactcherish

<f2305>
permuteacts=   sx
|In:fundwarp   |these CAN use
|Action:       |{and change}
|performs      |'thisfcmnet'
|up to 10      |and fcmindex,
|triplet acts  |fnloopcont,
|for a foundry |and several
|marked active |more

All the action in a FCM matrix, or network, or whatever we
call it happens through this function, which again is
called by the TRANSLUCENT loop defined at F:2309. This
functions diligently calls up to ten functions. These are
listed by number in a list, and the list contains warps.
This is a safe way to allow a whole FCM network to be
saved to disk, and later recovered, because warps should



140

be generated at runtime and not assumed to be the same
number between two different runs. Of course, the program
that loads various parts of a FCM framework from disk must
either have set up a full list of foundry actions, to
cover all variations, or it must actively reorganize that
list right after loading the FCM framework.
  Only funds marked 'active' are performed, and only when
it is marked that it does indeed have fund actions in it:
the F:2232 tells you that this is #9 and #49 positions,
which are set to 0 or 1. Both need to be 1 for this
to be performed. In addition, the fund action must be a
number in the list that is not basis (not zero).
  A fund action gets two inputs to the stack: the triplet
number, and the warp to the fund. See eg F:2400 as an
example of a fund action. It may or may not make use of
this input, but it must be taken off the stack, as no
output is expected on the stack after a fund action has
performed.

<f2306>
ix             ll:10
11             i9
ad
s9             f

fnactlist      3
lk             ad
s3             s9



141

<f2307>
lk             i5

|Note:
|entrainment
|can happen by
|tailor-made
|triplet-acts
s5             n?

<f2308>
d6             lo.
               |There is a
i1             |vast spectrum
ix             |of possible
i5             |entrainment
i3             |solutions;
ay             |make triplets
pf             |to do it! :>

<f2309>
translucent=   fnloopcont
|Action: this  dancethis
|is fcm main   ll:1
|algorithm;    fnloopcont
|makes use     isvarbasis
|of fcmindex   se
|and assumes
|thisfcmnet    ex

<f2310>
q1             ll:2000000000
|Note:both
|thisfcmnet    m2
|and fcmindex  fcmindex
|CAN change    lk
|within loop



142

|when done     ay
|thoughtfully  sx

<f2311>
|Note:the      ix
|'is active'   9
|flag at #40   wk
|allows parts
|of a net to   ix
|be switched   49
|on and off
|during run    wk

The card here has an innocent mistake in its comment: it
says #40, whereas in the right column you see that it
refers to #49. In the next card, you see the essential
mechanism: when the card is set as active, AND the card
also lists functions (fnacts), it goes through the list of
ten triplets to perform each listed function there
properly. See F:2232 for comments of content of a foundry.

<f2312>
an             ix
n?
               |Note:the
               |variable
               |'thisfcmnet'
               |can be used
               |by these:
d2             permuteacts



143

<f2313>
fcmindqty      d2
lk

i2

               twobillion
gt             s2

<f2314>
|Note:the      lo
|flow of 'fcm  |By this
|light' thru   |feature, the
|thisfcmnet is |checking of
|inner loop   |'fnloopcont'&finish
|supposed to   |can happen
|finish fast   |in outerloop
|each time     lo.

<f2315>
fcm=           |programs by
|action:fcm is |networks of
|firsthand     |what we call
|computerised  |foundries to
|mentality;    |reflect the
|allows the    |programmers'
|shaping of    |mentality
|g15 pmn       |without 'ai'

<f2316>
|Indexlen>3?   fcmindqty
fcmindqty      lk
lk             fcmindex
4              lk
lt             bs
se             |Assumes var



144

               |'thisfcmnet':
ex             translucent.

<f2317>
fnact2500=     |for board
|In:triplet#,  |Result:
|foundrywarp   |triplet #10:
|Action:scans  |num1:boardx
|5x5 board     |num3:boardy
|This triplet: |These are set
|num1:piece#   |to basis when
|num3:fn num   |piece unfound

<f2318>
s6             |ix=warp to
s5             |triplet#10:1
|i5=triplet#   |jx=warp to
|i6=warp to fn |triplet#10:3
|We'll set:    |j5=number of
|j3=fn# that   |piece to
|has board     |scan for by
|as 5x5 array  |this fn act

<f2319>
i5             i8
3              lk
mm             t5
i6             h8
ad             h8
7              i8
ad             lk
s8             t3



145

<f2320>
i6             qx
39
ad
f
tx

sx             qx

<f2321>
ll:5           j5
ll:5           eq

i2             n?
i1
j3
fnww           d7

<f2322>
i2             lo
ix             lo
kl             0
               ix
i1             kl
jx             0
kl             jx
ex             kl.

<f2323>
               fnact2500&finish &finish
               2500



146

               fnactcherish

<f2324>
prt2numcont=   ,&finish &finish
s2             prtcont
s1

i1             i2
prtnumcont     prtnumcont.

<f2325>
easyfnlist=    fcmindex
|lists fnnames lk
|w/mainvalue,  sx
|triplet#10    prtclr
|when 1st in   prtsuspend
|it is nonnil; ce
|You can make  ^***all listed
|variations!   t9

<f2326>
<space>=more  lk&finish &finish

t5             le
32             d4
t8
               prtrelease
ll:2000000000  j9
i1             prt
nextfund       ex



147

<f2327>
m1             prtcont
ix             i5
ay             wgetfnam
s5             prtcont
i5
wtofnnum
prtnumcont     ' &finish &finish
 '            prtcont&finish &finish

<f2328>
i5             , lev# &finish &finish
10
wk             prtcont
|ie, mainval;  i5
|as for #10:   lk
|only when     prtnumcont
|1st isn't 0   , tripl#10:&finish &finish
prtnumcont     prtcont

<f2329>
i5             d7
37
ad             jx
tx             lk
               jx
jx             up
lk             up
n?             lk

<f2330>
prt2numcont    i1
|Note the use  24
|of 'de', it's mo
|like 'se' but n?
|jumps a given 11
|nums of lines |ie,11 lines!



148

 &finish &finish
prt            de

<f2331>
|11 lines:     se
prtrelease
j5             ex
prt            prtclr
ki
j8             prtsuspend
eq             |::11 lines
n?             lo.

<f2332>
fnammustfind=  tx
|In:name of fn jx
|Gives:number  |useful when
|As fnam, but  |lining up
|tells         |new
|programmer   |foundries&finish
|calls 'qu'    fnam
|when minusone sx

<f2333>
ix             ^?foundryname
ix             pp
isunsigned     jx
               pp
se
               kk
               sh
ex             qu.



149

<f2334>
|Each fcm app  |for apps that
|branch will   |advanced:
|have its own  |instead of
|'pet set' of  |limiting the
|functions;    |scope, we've
|and its own   |fcm here so
|brand of      |open it has
|entrainment,  |unlimited use

<f2335>
|Consult the   |standing free
|text called   |from fixing
|'learningpmn' |too much the
|part of       |'resolution'
|intraplates   |of how we
|dot com:this  |approach the
|shows the     |concepts that
|importance of |point at mind

<f2336>
|What we have  |open ideas of
|in the core   |how to make
|fcm is then   |fnacts for
|the semantics |them--incl
|of foundries, |open ideas
|cfr comments  |for subfuncs
|at f:2232     |for these, eg
|--and some    |the 'pairstk'

<f2337>
pairstk=       &finish&finish
^.             |we assert the
|good eg in    |max here, 250
|fnacts        |{note this}
255            |  set also in&finish
2              |'pushpairstk'



150

mm             pairstk
sz             kl

<f2338>
resetpairstk=  |pairs;typical
0              |use in fnacts
pairstk        |is so that
lk             |each fnact
kl.            |completely
|helpful with  |finishes use
|an extra      |of pairstk
|stack for     |within itself

<f2339>
poppairstk=    pairstk
|Gives:either: lk
|x,y,flag or:  |Note: if u
|flag=basis;   |increase sz
|Gives the     |of pairstk
|most recent   |also inc in
|pair, if      |pushpairstk
|any, w/flag=1 sx

<f2340>
ix             basis
lk             ex
s7
               q7
i7
ye             i7
               ix
d2             kl



151

<f2341>
i7             h8
sl             i8
up
s8             ix
               ay
i8
ix
ay             1.

<f2342>
pushpairstk=   |there is more
|In:x,y;       |computation
|as defined,   |'between' the
|max 250 pairs |foundries
|Note that     |rather than
|when we have  |inside fnacts
|entrainment   |--pairstk is
|for fn nets,  |for fnacts

<f2343>
t5             i8
t1             250
pairstk        gt
lk
sx             se
ix
lk
s8             ex

<f2344>
i8             ya
sl
up
s3             j5
               h3
j1             i3



152

i3             ix
ix             ya

<f2345>
|note that     h8
|the 250       i8
|limit for
|this little
|stack is such
|that this
|func exits    ix
|if overflow   kl.

<f2346>
init3rd=
ce
3.foundation&finish &finish

825
5
rp
freshsketch
newmatrix.

<f2347>
showoff=       |Splashing a
|Startup       |little bit
|display for   |pixel stuff
|tf with some  |to stimulate
|useful inits  |all the
|of some       |g15 pmn
|drawing vars  |programmers'
init3rd        |minds ;)



153

<f2348>
255            10
15             10
15             25
120            10
8              50
50
60             shapelines
newtriangle    approvesketch

<f2349>
^Third         ll:50
pp             freestars
^Foundation
pp
^PMN :>
pp
^^
pp             lo

<f2350>
20             newmatrix
10
120
60
150

matrixrectf    approvesketch.

<f2351>
car=           b9
showcars.
lush=          ^with lush b9,
quietb9more    b9
ce             ^  where 'q'&finish
You can now   b9&finish &finish



154

b9             ^will quit
use 'more'    b9.&finish &finish

<f2352>
tripletpos=    3
|In:triplet#   mm
|Gives:start
|pos in fund
|of this
|triplet,
|where 1 is    7
|first triplet ad.

<f2353>
fnnextval=     ww.
|In:fnnum      |Remember to
|Gives:main of |use wtofnnum
|2nd triplet   |when you've
13             |a warp and
w              |calls on func
thisfcmnet     |that wants
lk             |fn# as input!

<f2354>
pos30x50=      fund30x50=
|in:x 0->29;   |fn# -> x,y
|   y 0->49    f
|{or any y}    30
|gives: fn#    mo
30             w
mm             30
ad.            di.



155

<f2355>
get30x50=      thisfcmnet
|in:pos x y    lk
|{0->29,0->n}  |Note that
|gives:value   |these '30x50'
|in fn         |routines have
30             |a fixed x
mm             |range only
ad             ww.

<f2356>
put30x50=      thisfcmnet
|in:val pos    lk
|x y
|Puts to fn    |So, y can be
               |smaller or
30             |larger than
mm             |50 in these:>
ad             yy.

<f2357>
up30x50=       w9
|in:val pos    |'ku' is
|x y; adds it  |defined in tf
30             |as 'kl with
mm             |up', ie, kl
ad             |that adds a
thisfcmnet     |value :>
lk             ku.

<f2358>
fnsetval=      yy.
|In:val,pos,
|fnnum; sets
|the position
|in the fund
|to value;



156

thisfcmnet
lk

<f2359>
fnaddval=      w9
|In:val,pos,
|fnnum; adds
|to position
|in the fund
|this value;
thisfcmnet
lk             ku.

<f2360>
fnfitaddval=   |Prettnumber,
|In:min max    |pn, defined
|value pos fn# |in 3rd
|Adds val to   |foundation,
|pos in fund   |does just
|but keeps it  |this thing!
|within range
fnwarp         pn.

<f2361>
fnposwarp=     thisfcmnet
|In: pos, fn#  lk
|Gives: warp
|Like fnwarp,
|but instead
|of pos basis,
|here pos can
|be any        w9.



157

<f2362>
fngetval=      ww.
|In: pos,
|fnnum; gets
|the value
|from position
|in the fund
thisfcmnet
lk

<f2363>
fnaddmainval=  w9
|In:val, fnnum
|Adds val to
|mainval of fn
10
w
thisfcmnet
lk             ku.

<f2364>
fnaddnextval=  w9
|In:val, fnnum
|Adds to main
|of triplet#2
13
w
thisfcmnet
lk             ku.

<f2365>
graphfnval=    sl
|in:x y v1 v2  s2
|x/y is here
|switched;     |v1, v2 range:
|average of v1 |0 to 800,000
|  v2 is tone&finish



158

tx             sl
sx             s1

<f2366>
i2             d
25             up
ad

i1
15             d
ad             up

<f2367>
ix             makefit
jx
ad
sr
3137
di
0
255            matrixrect.

<f2368>
graphboundary= sl
|in:x y        15
|x/y switched  ad
sl             s1
25             i2
ad             i1

s2             d



159

<f2369>
d              i1
up
               d
255            d
matrixrect     up
i2
               0
up             matrixrect.

<f2370>
graphhere=     j1
|in:v1,v2,x,y  800001
               lt

s4
s1
t9
t1             d4

<f2371>
i1             i1
i4             i4

graphboundary
               j1
               j9
ex             graphfnval.

<f2372>
|Startwave may thisfund
|use factor in basisthis
|tp, 62832,    wavenumconst=
|{ca two pi},  7854.
|eg 7854 or    |'fastvar':you
|3927, which   |can modify it



160

|factors tp in nextfund
|resp 8  16   basisthis&finish

<f2373>
startwave=     ad
|In:tr#,fnwrp  t5
tx             j5
sh             tp
10             lt
jx             d2
wk             basis
wavenumconst   t5

<f2374>
j5             50
si             jx
40             wk
mm             setfnmainval
|Main to basis j5
|Uses link#1   10
400000         jx
ad             kw.

<f2375>
bringwaveon=   s3
|In:angle val  s9
|triplet# fn#  s6
|Via carrywave |chks fn isn't
               |a boundary:
fnwarp         jx
tx             10
tripletpos     wk



161

<f2376>
800000         0
gt             800000
               i9
se             i3
               jx
               |We call tf
               |prettnumber:
ex             pn

<f2377>
i6             sx
i3
u2             0
jx             9
kw.            ix
               thisfcmnet
relaxfn=       lk
|in:fn#        yy.

<f2378>
selfactivefn=  yy.
|In:fn#
sx             spreadwave=
1              |in:fnwrp
9              |Via carrywave
ix             |Assumes lux
thisfcmnet     |value #40 has
lk             |triplet#

<f2379>
tx             wtofnnum
40             fund30x50
jx             |Note: spreads
wk             |to y+1 and to
tripletpos     |x-1 thru x+2
sx             up



162

               s2
jx             s1

<f2380>
10             t5
jx             |Both
wk             |intensities
13             i1
jx             u2
wk             i2
ad             pos30x50
sr             s5

<f2381>
f1             m1
i2             i2
pos30x50       pos30x50
s6
i1
i2
pos30x50
s7             s8

<f2382>
j5             1
ix             ix
|intensity     u2
|of wave:      |angle:
|1st val of    |3rd val of
|triplet       |triplet
i5             i5
fnsetval       fnsetval



163

<f2383>
j5             2
ix             ix
               u2

i6             i6
fnsetval       fnsetval

<f2384>
j5             3
ix             ix
               u2

i7             i7
fnsetval       fnsetval

<f2385>
j5             4
ix             ix
               u2

i8             i8
fnsetval       fnsetval.

<f2386>
|simple 30x50  |  * *      *
|waves guided  |  |/     /
|by angle#, #40| #2    #1->*
|*     *  *    | ============
|  \    \ |    | #5-#8 are
|*<-#4   #3    | side beneath&finish



164

|#1-#4 are side| in y, w/#8
| forward in y | nearest #1&finish

<f2387>
|For eg        | #7    #8->*
|reflected     |  |\     \
|waves, #5-#8: |  * *      *
|*<-#5     #6  | ============
|  /     / |   | circular
|*      *  *   | waves using
|Use eg func   | a good deal
|'si' for more | more nodes

<f2388>
carrywavehere= i9
|In:tr#, fnwrp u2
|Via carrywave jx
tx             wk
sx             |i4 is angle#
ix             |as prev cards
tripletpos     |explain
s9             s4

<f2389>
i4             i9
1              jx
8              wk
isnotwithin    |Note:angle#5
|angle# here?  |to #8 used in
se             |eg reflection
               |of waves
ex             t5



165

<f2390>
j5             400000
400000         j1
su             680
|waveresonance pm
|tuningnumbers ad
810            i9
pm             jx
t1             kw

<f2391>
jx             |By tn we get
wtofnnum       |16 simple
|pd that does  |lines; tf has
|nothing: tn=  |'dh' which is
|TraNquility:> |like 'd2' but
fund30x50      |counts *16*:
s2             m4
s1             dh

<f2392>
i4             i4
j1             j1
ix             ix
f1             f1
i2             f2
tn             pos30x50
pos30x50       bringwaveon
bringwaveon    ex

<f2393>
i4             i4
j1             j1
ix             ix
i1             f1
f2             f2
tn             pos30x50



166

pos30x50       bringwaveon
bringwaveon    ex

<f2394>
i4             i4
j1             j1
ix             ix
m1             i1
f2             f2
tn             pos30x50
pos30x50       bringwaveon
bringwaveon    ex

<f2395>
i4             i4
j1             j1
ix             ix
m1             m1
i2             f2
tn             pos30x50
pos30x50       bringwaveon
bringwaveon    ex

<f2396>
i4             i4
j1             j1
ix             ix
m1             m1
i2             m2
tn             pos30x50
pos30x50       bringwaveon
bringwaveon    ex



167

<f2397>
i4             i4
j1             j1
ix             ix
m1             i1
m2             m2
tn             pos30x50
pos30x50       bringwaveon
bringwaveon    ex

<f2398>
i4             i4
j1             j1
ix             ix
i1             f1
m2             m2
tn             pos30x50
pos30x50       bringwaveon
bringwaveon    ex

<f2399>
i4             i4
j1             j1
ix             ix
f1             f1
i2             m2
tn             pos30x50
pos30x50       bringwaveon
bringwaveon    ex.

<f2400>
carrywave=     800000
|In:tr#,fnwrp  gt
tx
sh             se

10             ex



168

jx             |This isn't
wk             |a fence

<f2401>
40             d3
jx             |this fnact
|The 'luxury'  |doesn't
|pos #40 is    |reflect at
|only used for |boundaries
|spreadpoints  jx
wk             spreadwave
n?             ex

<f2402>
ll:2           carrywave&finish &finish
i1             1234
jx

carrywavehere

lo.            fnactcherish

<f2403>
fcmheadertxt=  fcmpausekey=
^.             ^.
               32
fcmshowpause=  fcmpausekey
^.             kl
100
fcmshowpause   fcmlooptxt=
kl             ^.



169

<f2404>
fcmmaybepause= n?
ki             se
fcmpausekey    ex
lk             ki
eq             sh.
f
fnloopcont     fcmgraphloop=
kl             ^.

<f2405>
60             20
fcmgraphloop   bx
kl
fcmdrawintro=  fcmlooptxt
ce             lk
fcmheadertxt   105
lk             673
105            bx.

<f2406>
graphsomefns=  s5
|Fnact to      i5
|show activity n?
tx
sh
10             se
jx
wk             fcmdrawintro

<f2407>
i5             mo
up             ye
10
jx             se
kw
i5             ex



170

fcmgraphloop
lk             freshsketch

<f2408>
i5             ll:35
makenumber     ll:30
               m2
860            m1
668            pos30x50

               f
rp             fnmainval

<f2409>
w              fcmshowpause
fnnextval      lk
m2             activepause
m1             ck
graphhere
lo             se
lo
approvesketch  fcmmaybepause.

Some of the within 200 cards listed here have other
aspects to them than setting up the FCM framework, but for
completeness we included them all exactly as in the
standard G15 PMN Third Foundation, which is the core--with
few or none extensions needed in the essence package--of
all future G15 PMN work including with FCM and what we
call Open Robotics. It is good to have this overview, as
presented in this chapter, handy in reading the advanced
G15 PMN examples involving FCM in the remaining volumes
in this book.
  Let us say what we regularly say in connection to all



171

program, but strongest of all when it comes to FCM: give
deep thought and mindfulness to the full range of possible
effects of putting your program into action in the real
world, especially if it is connected to motors, engines,
such as robots, or affect people emotionally. FCM can and
should be built with ethical constraints when it comes to
huge applications.

*****


