G15 PMN PROGRAMMING FOR KIDS

Aristo Tacoma

Art of Thinking

Vol. I: G15 PMN Programming for Kids

=== ——————=—=———=——==== *
| |
| mousefun= ck |
| |
| 11:1 se |
| al |
| 60 ex |
| activepause |
| |
| starspeople lo. |
| |

*




G15 PMN PROGRAMMING FOR KIDS

kkhkkkkkkkkkkkkx

Publication info:

All the 5 volumes in Art of Thinking by Aristo Tacoma to
be available for free on the net. This is the 1lst volume.
See links at norskesites.org/fic3/fic3inf3.htm

This first volume is particularly oriented towards the
youngest readers. Forthcoming volumes build on this.

This is also published in paper, in 2018, by Yoga4d:VRGM,
Avenuege Library with ISBN number for National Library
of Norway assigned to Volume 1: ISBN 978-82-996977-9-8.
You can freely copy and distribute this text as long as
the text is whole and unedited and unshortened and
includes this notice and it is done so as to further

G1l5 PMN use. Copyright the author. Author's pen name

is: Aristo Tacoma. Publisher info: www.avenuege.com
Stein Henning Braten Reusch alias S.R. Weber asserts the
copyright for publications in his artist name Aristo

Tacoma. Yogad4d Avenuege Library, Yogad4dd:VRGM, Oslo, 2018.
*kkkkkkhkkkikikk*kx

PRELUDE

According to Alice in "Alice in Wonderland" by Lewis
Carroll, what's the use of a book if it doesn't have
pictures? There are lots of images in this book--in your
mind, when you read the easy text here. And if you want



G15 PMN PROGRAMMING FOR KIDS

more images, type the examples into your PC and it'll

make images. Does it satisfy Alice? I don't know. But

for a book to teach a programming language, I think it
is the right way entirely. Hope you like it, too!

In the upcoming volumes in this Art of Thinking series
we will build on what is here, but slowly, gradually,
coming to think about thinking in the purest sense; and
hopefully also clarify how we are absolutely not machines
and how we can learn from work with machines about how to
enable our intuition.

Spelling takes are by the angels.
--Anonymous

Note to the youngest readers:

I have tried to avoid the longest words but sometimes I
have forgot myself and they are there! But then, just

read on. Usually everything that is important is mentioned
more than once. And as you read it a second time, you'll
find that words that made little sense to you the first
time, makes more sense then, as you get used to them, and
see how the words are used. Play with your thoughts around
that which you want to learn--play and experiment, try out
things, and you'll pick it up soon enough. And good luck!

Note to the not youngest readers

I say 'for kids' because I mean to write to anyone who can
read English texts, also slightly more complicated texts,
but who do not have lots of experience with computers; and
I try to use a language that is simple. But of course this



G15 PMN PROGRAMMING FOR KIDS

may just happen to make it interesting to adults, as well.
Wasn't it the physicist Albert Einstein who once said that
only if you can express it simply, have you understood

it? So this is not merely for kids,--it is about making
computer programming simple.

Note to those who want to learn also other programming
languages but who are thinking of starting with G15 PMN

In today's world of also more or less 'corporate'
programming languages--more or less owned by, or driven
by, and modified by, companies that in turn also offer
such as 'programming certificates' and possibly also jobs,
certainly there are people who, perhaps having hardly ever
touched a programming language before, wonder whether G15
PMN could be a gentle way to begin at the beginning.

There is no gentler way to begin at the beginning than
G15 PMN! So go ahead! But to be fair, open and honest, I
wish it to be stated strongly, right now: when G1l5 PMN was
made, it wasn't exactly because the other programming
languages seemed to be very ideal! It was made also so as
to make up for a lot of the troubles one easily run into
with other programming languages. Once you know this, then
you can go ahead with G15 PMN with this idea central in
your mind: that once you know what it means 'to code' a
function, an algorithm, then you have something that--
although clothed in perhaps very different words--you can
build on as a core expertise no matter what programming
language you take up next. Most other programming
languages hides things which are here up front (such as
'the stack', and 'warps')--but there is no harm in knowing
a little more of what goes on under the lid when you then
take up a language which clothes things in impressive-
sounding words like 'objects' and 'threads' and 'classes’',
or whatever words they do clothe coding in.

To give you a little more motivation for the pathway of
starting out with G15 PMN before taking up other
programming languages, I will suggest that it is easy to



G15 PMN PROGRAMMING FOR KIDS

build self-confidence in interacting with a PC that has
G1l5 PMN on it, while experimenting with new programs. This
self-confidence is something that you can have with you,
as a permanent factor, also when you go into wholly
different approaches to programming, which (unlike a few
nobler examples, like Wall's Perl or Wirth's Pascal) might
feel as though they are taking the programmer through a
bureacratic process in order to get anything done (and
sometimes literally so, when a company is so controlling
in their attitudes that they insist on looking at a
program before allowing it to be performed on a computer
of their make).

Whatever you choose as pathway to programming, be sure
that you work with a PC that doesn't have dense programs
pretending to have smartness hanging in the background,
trying to 'assist'. Programming is fundamentally a
relationship to your own thinking process where the
machine is no smarter than a mirror. It is the almost
delicious stupidy of the machine that makes programming
create an intensification of your own mind when you do
good coding.

FOREWORD
As you know, most forewords to books (when written by the
author of the book) are written long after the book itself
was written, and contain various excuses for why the book
is the way it is and hope you like it anyway and so on.
This foreword ain't so. (Besides the prelude and the
notes before this already has that type of stuff in it.)
The day, today, as I'm writing this, is sunny, and I'm
sitting in a park and crowds, tiny crowds of people are
around and children are playing and screaming and
shouting. And, chewing on my pen, I'm wondering how to
write this book.



G15 PMN PROGRAMMING FOR KIDS

I'm asking myself, what could possibly be the point of
suggesting to these children and youngsters and young
adults--and any adult--to spend time with something as
technical and abstract as a "programming language"?

Why not just spend time with the concrete? And with
natural language--such as getting good at English, develop
humour and wittiness there? And to exercise physically,
and to train elegant dance motions and postures and draw
and paint and indeed do what's life is all about? So, to
repeat my own question, why should anyone bother about
programming?

Okay--some might answer--it could be a bit useful. To
program probably means, for instance, you get better about
handling numbers. Which again may help you to think better
about money and money-making and that's helping everything
else.

Yet--I would object--most other fields of learning of
any kind are more truly useful than programming, in that
most other fields somehow leads to concrete skills in
dealing with life and opening up to life, perhaps.

But hang on a moment. What was that phrase we just used?
"Opening up to life"--that phrase!

I will now suggest a real answer to why you--yes, you--—
should learn G15 PMN programming if you haven't already
done so. And indeed any one. And I will use that phrase--
"opening up to life". Here is what I claim--and please
consider it:

To learn programming, and to work on making programs--
and looking at them--opens your mind and heart to a
greater experience of the orders of nature and life,
rather as learning to draw can help you to look at the
beauty of another's face.

The sun is shining very brightly now--after days of
clouds and rain--and I forgot to bring my sunglasses. If I
try to look straight at the sun, I have to close my eyes
four-fifth or so. And as I do it, bursts of radiant golden
bows as if emerging from the golden-yellow-slightly bluish
disk of the hot sun flicker in synchrony with any slight
motion of my eyelids. It's quite a display. Life is full
of harmonies, orders, patterns, and experiences, which can



G15 PMN PROGRAMMING FOR KIDS

be read like a symphony of coincidences, synchronicities.
And, like waves on the ocean, nothing in experience stands
still but the music, the orders, flow on and on.

In all this vast movement, we have to relate to, and
often change, our own expectations, plans, hopes, desires
--and yet when the day is suddenly very beautiful, the
mind as if orders itself. Intuition--your capacity to get
things right without quite knowing how or why--comes more
easily then, in what we can call "moments of harmony" or
"moments of meditation”.

"Meditation", the word, comes from an ancient greek word
relating to good and proper "measures", as does "medicine"
and "moderate".

So, in ancient traditions, words of deep meaning and
with nice sounds to them, and patterns--called "mandalas",
for instance--have been used to calm the mind of devotees
of many religions. And in all these traditions, the
experience of the connection between inner peace and
silence, on the one hand, and a sense of beauty and love,
on the other, has been commonly reported.

The simple pattern, the good sound--gently, effortlessly
repeated--or the ritualistic action, done with attention
for the sake of the energy of attention--these things,
then, are part of a life where experience goes deeper,
where the sense of art of living becomes possible.

And so, can it not be, then, that in the nice little
repetitive patterns and words involved in a great
programming language like G15 PMN (it is great, although,
as creator of it, it is immodest that I claim it)--can
lead to a more meditative life? A life in which you are
constantly more open to the beauty of all experience? The
sharpened sense of numbers you get by working with what is
called "32 bit numbers" in this language is also no
impediment to deep experience of the order of nature.
Inside numbers there are beautiful patterns--they are not
just heaps, but highly organised.

To conclude this foreword, I would suggest that whatever
usefulness we may or may not find connected to
programming, even a little bit regular touch, weekly or
perhaps daily, with something like G15 PMN is a



G15 PMN PROGRAMMING FOR KIDS

connection to something of the inner workings of the very
fabric of existence. If that sounds too grand, let us bear
in mind that notable thinkers in ancient Greece thought
the universe was "made up of numbers". Add to that a
little (or a lot) movement, and you get algorithms,
functions. And yet, the universe may have this inside its
core, and yet be beyond it: for the universe is no
machine, but alive, like you and me.

As motivator, then, to look into G15 PMN code, and do
your little experiments with it--or make full programs on
your own--is the idea that you are sort of cleansing your
mind of the confusions of past experience and readying
your mind to experience life anew. As if for the first
time, and yet with a sense of constantly learning at your
soul and spirit level.

A.T. April 10, 2018

P.S. Note that it is very possible that some slight
mistakes on occasion have crept into the program code
included in this book. At some point, the manuscript is
finalized, even if not all those issues have been
discovered and correct; pls be forgiving about this! :)



G15 PMN PROGRAMMING FOR KIDS

FOR ADVANCED STUDENTS INTERESTED IN THE ENTIRE FIVE-VOLUME
SERIES 'ART OF THINKING'--AN INTRODUCTION TO ALL OF THEM
How can we best think about thinking when we are, as it
were, wrapped into thinking? There is such a vast quantity
of studies into thinking that begin with drawing up a map
of thinking,--a map that is then fought for and which,
eventually, has to be dropped. Perhaps this is because
thinking is infinitely complex, and because, when we think
about thinking, we must find in ourselves a vast humility
for the subject matter and be cautious about 'maps'.

I also think we have to be careful about drawing too
many deductions from our natural language about the area
of thinking. Natural language serves many other purposes
than mapping the nature of the mind. While a natural
language with a great and flexible number of general
concepts like English is a great thing to have during
such an enquiry, it can also mislead and so we have to
apply great care in language use.

Therefore,--and to some, this might seem surprising at
first--I decide not to talk any much about thinking in the
first volume, but rather sketch a working programming
language from the very start. An artificial computer
language is (when designed, as G1l5 PMN has been, to be as
simple, beautiful and elegant as possible) a great
advantage in our study. For then we have something that is
related to English yet not fully dependent on it, some-
thing which is like a natural language in some ways but
very different in other ways. So, by enquiring into
thinking while having both instruments at hand, we can do
a better job than if we have only one of them.

A computer language, like the G15 PMN I've made, has a
great advantage compared to a discipline like 'geometry',
'algebra', or the like, in that it doesn't rely on much of
'intellectual agreement' between scholars, but rather



G15 PMN PROGRAMMING FOR KIDS

shows its worth by the integrity of its technological
functionality. The dissolution (in practise) of the area
of 'foundational mathematics' in the 20th century after
Goedel's 2nd Incompleteness Theorem is a case in point.

Just as it is the task of the first volumes in this
series to create an as vivid understanding of the G15 PMN
formal language as possible, also at more advanced levels,
so it is the task of the completing volumes in this five-
volume series to be able to call on both this and natural
language while not being trapped in either, as we explore
thinking. By necessity, this enquiry into mind, thinking
and intuition must attend to the greatest context, ie,
cosmos, and so we will naturally benefit from the theory
of cosmos that I believe is the most simple interpretation
of the core results of the past hundred and fifty years of
studies of energy processes, atomic & subatomic processes,
namely the Super-Model Theory. Inside the Third Foundation
app in G15 PMN there's a text that describes the theory.
That text has been published as part of the printed book
"The Beauty of Ballerinas" by me alias SRW, Avenuege 2017.
In that text there is a full set of acknowledgements which
is relevant also to the development of the programming
language G15 PMN.

The study of an art of thinking should naturally lead to
enhanced skills in the art of making decisions, and
contribute to several related quests, like dialogue,
meditation, harmony in relationships. In that manner, it
is my sense that these volumes can contribute harmoniously
to society and not just practically to handle computers
and robots, or philosophically as a theory of mind.

In this regard, it is worth noting that G15 PMN has been
so designed that any technology no less than that which
evolved at the beginning of the 21st century AD should be
able to peform G15 PMN. It is in that sense a formal
language that can be spoken about regardless of any future
state of technology and science, as long as the natural
minimum of pesonal computing technology does exist, as I'm
sure it always will. My bet is also that English in its
present inter-cultural form always will be much in use.

10



11

G15 PMN PROGRAMMING FOR KIDS



G15 PMN PROGRAMMING FOR KIDS

PART A: GETTING ACQUAINTED WITH G15 PMN

Part A, chapter 1: SAY "HI" TO G15 PMN

Why is it called "G15 PMN"? It's just a name, of course.
Ideally, the name of the language should tell you
something about it, and has a nice and unique sound to it
as well.

First, "G15". It is a name for the core. The core is
meant to be part of something generous, graceful, etc. "G"
on its own sounds rather like "gee", and has a bit of

12



G15 PMN PROGRAMMING FOR KIDS

rhyme with "fifteen". This core, nearest the electronics
that makes up a personal computer, is about numbers in
movement. So a number being part of its name makes sense.

Fifteen is a neat number; it is, as you know, 3 times 5,
and 3 together with 5 is a combination we come back to in
discussing "the golden ratio". And here we have a pair of
numbers that can help you in drawing and painting. It's
also possible to say much more about how 15 is meaningful,
--it being small, yet big enough so that when we count
from 0 to 15 we have what we will discuss later as "four
bits". And more so.

Then "PMN". Mostly, it's just a good, short phrase,
pee-emm-enn, again a rhyme within itself and a bit same
type of sound as G15.

Where G15 on its own is mostly about numbers, PMN is a
sort of layer on top or around Gl5 to make it more easy
for us, more natural, more meaningful. Perhaps the "MN" is
for "meaning", and "P" for "primary" or first. Perhaps M
is for "matrix"--something we discuss later--or for
"match" or for a big word about all existence,
"multiverse". Then "N" may be as in "net"--something we'll
briefly touch on when we say something in a chapter about
robots and then "FCM"--or by a word like "noetics",
meaning mind or the like.

But it is not the machine that has mind when you use G15
PMN--you have mind, and you get more activated in your
mind as you use it. In a way, it is a language for the
mind to speak to itself in a different way than what a
natural language like English can offer.

In having a keyboard and a mouse and a monitor, all
connected to an open personal computer, or PC, with G15
PMN in it, you have a kind of tool for thinking at your
fingertips. The machine won't do any thinking for you, but
like a camera in a way, it can give valuable impulses--
what we call "feedback". (Some people have sometimes
claimed that they can make machines think--don't believe
these people.)

Most things in life are a bit gradual, on the move, not
quite one way or another way. A big word for this is
"analog". In doing something with the G15 PMN programming

13



G15 PMN PROGRAMMING FOR KIDS

language, we find that things typically are either one way
or another way. A word for this is "digital".

So we also say, "digital computer", "digital
electronics". (Technically, we can say that the digital
electronics of a G15 PMN computer has in it a G15 PMN CPU,
or Central Processing Unit, of a 32-bit kind, which is not
made by means of a 'microprocessor' but as a combination
of many things we call "intraplates". But this is not
necessary to know in order to learn and enjoy this
language. By the way, if your computer has a key on the
keyboard named "DEL" or "DELETE" it is a different type
of CPU in it, and G15 PMN is running on top of it; the
DEL key is then used to connect to this other CPU.)

Sometimes there are bridges between the analog and the
digital--fortunately! For instance, we can set up a
digital computer to work together with machinery that is
not digital but more analog, so as to produce analog,
normal music we can listen to and dance to or relax to.

In each of our meetings with the programming language
G15 PMN, we will either type something into the language
itself (and we always use the keyboard, so it is time well
spent to learn to touch-type on it without having to look
at the letters on the keys all the time!)--or we will put
it into bright green cards withy the two columns of large,
easily redable letter. And then, after putting the cards
in order, we make the PC go through one or more of them.

Then, if we have typed something wrong, we can go back
to the card (the PC will tell us which number it has, so
we'll find it easily, each time). There, we'll fix it and
we can try again. This is called "program correction". It
can take even more time than making the first form of the
program--and all in all this is what we call
"programming". Even the best programmers set aside lots of
time for program correction. Sometimes, though, there's
hardly anything to correct, and the program just works.
That's fun, but it's not a goal to do away with program
correction. Program correction is part of our thinking
about what we really want the computer to do. Often we
discover that we haven't entirely thought it through in
this phase, and must lean back or go for a walk or come

14



G15 PMN PROGRAMMING FOR KIDS

back to it next day with some fresh ideas. So program
correction isn't only about correcting spellings and such:
it is as often to look at our own thoughts and think even
better thoughts--and then to change the program and see if
the PC does what we thought it would do after this.

So, we either type something straight into the
programming language--into what we also call "the
terminal"--or we type it into cards that we save, one by
one.

The terminal is a fun place to begin and it's also very
useful in checking how a program works. The terminal we
use, normally, in doing whether simple or very advanced
Gl15 PMN programming, is also called "the TF terminal".
Sometimes we just say "TF" or "tf". This is short for a
long phrase which sums up stages in how PMN was shaped.
The full phrase is "The Third Foundation" (it isn't
necessary to understand just why it is called that, just
remember that when we say "terminal" or "tf" we usually
mean the same type of working with the language as if
somebody says "third foundation").

Have you ever played a game, such as TexasStars, on a
PC with G15 PMN?

Then you have possibly done it this way--which is very
similar to how we start the TF terminal--so I suggest you
start up TexasStars this way if you aren't already
familiar with this way of starting up that game of ours.

1. You switch on the G15 PMN PC (and if it is already up
and running with G15 PMN, you take it off first).

2. You type the three letters

mnt
and you press lineshift. Some call this large button to
the right of the letters for the ENTER-button, and we
sometimes say it one way, sometimes the other way. The old
way of saying it--from the times of the mechanical type-
writers--was "carriage return", so on occasion you'll see
the two letters CR to mean just the same type of thing.
(G15 PMN often wants you to press that lineshift button,
so when it appears to be waiting for some input and you
don't know what to press, it is often correct to press
that button.)

15



G15 PMN PROGRAMMING FOR KIDS

The three letters mnt are short for "mount", and it
means, let's load some stuff into the PC.

3. The menu shows and you press the digit one:

1

4. Then you type the number of the program--also called
"application", or "app", for short, which in the case of
TexasStars shooting game are these seven digits:

101010
As you press lineshift after these then it should say
something about SUCCESS. (If it doesn't, get somebody to
help you set up the computer so that it has both this
TexasStars app and the TF app in it.)

Press lineshift again and the menu will open.

5. At the menu, press the CTR button (also sometimes
named CTRL)--which means 'control'--and hold it in, and,
while holding it in, also give the W-key a quick press.
Then release your hold on the CTR button. This we can
write as:

CTR-W
This activates the mouse, so you can use the mouse to
start programs. (A click on the right of the mouse makes
switches off the menu mode again. Then the menues can be
changed, what we call the 'edit' mode. To get the mouse
back to work if you hit the right side of it, press CTR-W
again.)

6. Now you can use the mouse to start the program. Look
for an arrow or flower-like type of thing, in this case
after a big F and before a big number 1. Find this place
with the mouse pointer, and click on the left side of the
mouse to start the program. The whole app starts now, and
a press on the large lineshift button is all it should
take to get you going with the game! You shoot at the
mysterious objects in the sky by a click on the mouse, and
move by a push on left and right arrows. ESC to leave the
game.

7. When done playing, type

qu
and press lineshift to get to the menu.

8. To leave the menu and the other cards--we also call

this the CAR editor--press

16



G15 PMN PROGRAMMING FOR KIDS

CTR-Q
in the same way you pressed CTR-W above. Then type

reb
and press lineshift, and that allows the G15 PC to reboot
and freshen itself and its socalled "memory" or RAM, so
you can start it anew.

To start the G15 PMN language in its TF terminal, all you
have to do is to go through exactly the same motions
again, only choose to type, not 1010101 as app number, but
3333333 (you can just type as many 3's as the field
allows, so it fills up to seven digits). Do the CTR-W and
the mouse-click to start it.

Done it? Great!!!

Now that you have the Third Foundation, or TF, terminal,
clear and present on your Personal Computer's display, you
see there a sort of greeting graphics--a square made of a
lot of lines and a bit of a triangle made out of tiny
squares, and so on. As you press lineshift several times,
you kind of carve a bit of black in that bright green
graphics each time. If you press lineshift many times, you
make the whole column black.

Let's connect to G1l5 PMN, say hello to it. Type the two
letters:

hi

and press lineshift. You might enjoy the greeting it gives
you. It was actually pretty much the first thing I got PMN
to do, when I made it. It wishes you good luck with large
bright green letters on black. You find that this bright
green makes the world around it look quite rosy--it is
something called 'afterglow'--just like a yellowish sun
makes the sky around it blue, so does a bright green
computer monitor makes any white near it look a bit pink
or red or something like that. It's called "complementary
colors". But bright green, or yellow-green, is also found
to be both relaxing and positive whether you work with it
early in the day or late in the day or at night.

Some might ask, "Isn't it best to have a color PC? For
then you can look at such as photos more like things are

17



G15 PMN PROGRAMMING FOR KIDS

in real life." But think about it: do you really wish the
PC to go so near real life it looks like it? Is that the
point of computing machines? Or is it the point that they
are going to be there for this and that and the other task
—-—-including calming our minds--but then we want to go out
and leave the PC and experience the full colors of real,
analog life. We don't want to make the PC into something
we get addicted to, so we get lazy and do nothing but
steer at it all day. So the PC is a good thing only if we
don't allow every desire to have its say but keep back a
little, keep it back a little, how much we develop it.
Nobody who is sane want the machines to take over life or
to melt with the machine somehow, and so the machines
should not, must not get over-developed. And if they have
been over-developed in the past--as they have--let us not
contribute further to this over-development, but go
beyond it and focus on what is good.

So you have typed in "hi" and you can do that again and
again and you get the same greeting over and over again.
Let's have the PC type your name in nice letters. It's
time to use some of the other things on the keyboard than
letters and numbers. For instance, above the digits you
find many other things--we call them "characters" or
"special characters". Over the digit 6 you get to "~ and
over the digit 7 you get to &, if you press SHIFT key and
hold it in while you also give the digit a quick press.
The SHIFT key is sometimes written as "SHIFT" on the
keyboard, at other times it is a sort of very broad arrow
pointing up. It is the same key you use for getting big
letters in when typing a text. (At some keyboards, what is
above the digits may be moved around a little bit, but
experiment and you'll find all you need.)

But first, let's clear the screen. Type

ce
and the screen gets all black. You can think of it as c as
in "clear" and "e" as in "entire screen" or "everything".
This happens when you press lineshift.

Type it in using small letters. (In the TF terminal, the
big and small letters are rather the same, though, only
that a dot appears on top of the letters that are meant to

18



G15 PMN PROGRAMMING FOR KIDS

be thought of as big.) Don't put any blanks before these
little commands. But if you do, Jjust type it in once more.

So, what's your first name? Type this into G15 PMN:

&yourname&
only that you type whatever your name is inside the & and
the &. Then press lineshift, and if you did it right,
there is no message from G15 PMN. It just stores that name
and you can get it out again, this way:

b9
Nice, right? It gives you your name, but it uses more
smooth letters than what it usually uses for programs,
because you said "b9". Try the same but slightly different
--like this:

&yourname&

pp
So you type your name again, with the & around them, and
then you use pp instead of b9. The "p" means "print", and
"pp" simply means that it is a very simple and often used
print command, and two p's are easy to type in. "B9"
sounds like "benign" which means "nice, good, healthy",
when you read it out. So we call the type of pp letters
one type of "font" and the b9 type of letters for another
type of "font". And so you have a B9-font and you have
another font, that we sometimes call "robot-font", because
--like robots--it is a bit square and machine-like. It is
also easier to use when you do much programming in G15 PMN
than any other font, this robot-font--because it is shaped
so that this language is easy to work with using it.

Ready for another experiment with G15 PMN? The computer
is nothing if not repetition! So let's get it to repeat
your name ten times. Ready for it? A bit of typing we
shall do. Can you manage to type this exactly? Try it.
Then do it again if it didn't work. If all gets funny,
type 'qu' and exit the G15 PMN terminal, press CTR-Q, type
the 'reb' command to let G15 PMN refresh itself. As you
start it up again, you'll find that it is entirely clear
and it has no scars or memories of the last session--which
is one of the wonderful things about programming--you get
infinitely many new chances!

So, let's type in something that allows us to create a

19



G15 PMN PROGRAMMING FOR KIDS

new word in the language. That word will exist just for
this session, for we do not store it on a card. So almost
any name will do. Shall we call it "myname"? So we are
going to say myname= something something. This "=" is
usually high up on the keyboard, around the area where the
lineshift button is. It is the "equal sign". We type in
some stuff--at least one line, maybe several--and then at
the last line in this little program, we put a dot, ".".
Okay? So what we will type in is what we did above, but
we are going to say--do this ten times--and the way we say
it to the PC is this way: LL:10. Or with small letters,
11:10. This means, let's have a "loop". A loop is another
word for "repetition". It wants to know what--how many
lines to repeat--and so each time we type in LL: something
then it wants, on a lower line, to have the letters LO, or
--with small letters to be exact, "lo". So here we go,
type in this as exactly as you can (just be sure to type
your first name where it says 'yourname'):

myname=

11:10

&yournameé&

b9

lo.
If you typed this exactly--being sure to type the letter
"1" rather than the digit one where it says "11" and where
it says "lo"--it will say nothing at all. The principle is
"no news is good news"!

If it says nothing, it means that it perfectly handled
what you typed. It means you succeeded, most likely, in
making a new word in G15 PMN for this session. (If not,
just restart the PC the way we said, and try over again.
This is a very normal thing to do for any professional,
advanced programmer--get to love the restart of the G15
PMN PC!)

So to check out your new command, your new word, type
this:

myname
and as you press lineshift, you should get the PC to give
you ten copies of your own first name on the computer
display. I'd say that's enough for a first session, and

20



G15 PMN PROGRAMMING FOR KIDS

let's complete the session while the game is going good.
So type

qu
and press lineshift. At the menu, press

CTR-Q
and then type

reb
and at lineshift, the G15 PMN will refresh itself. Next
time, we will see how we can use cards, so that it can
store something between our sessions. For what we type in
during one session in the TF terminal isn't there the next
time we take that terminal up, but that which we store in
cards is more easy to get up the next time on the same
PC. Of course, it may be that you are using a PC where the
cards are constantly cleansed in order to keep the PC in
top shape for the use of many people--but even so you can
learn to use cards while you sit at the PC. Then later on
you can get to work with a PC that is more your own, and
use the same skills you build up here.

Part A, chapter 2: CONTROL YOUR G15 CARDS

21



G15 PMN PROGRAMMING FOR KIDS

The Personal Computer, at its best, is a sort of greatly
advanced paper-and-pen type of thing. Similar to paper and
pen work, you can gather yourself, compose your thoughts,
by work with a Personal Computer. And it is calm and it is
easy to get the same responses each time, so you get a
nice sense of overview. How important isn't that in a
world where sometimes our meetings with each other are
full of openness and lovely--and sometimes not so lovely--
uncertainties! Just like sleep is in contrast to wakeful-
ness, and a starry night is in contrast to sunlight, so is
working with pen and paper, or with a Personal Computer,
or with reading a book, or making a drawing or making a
painting something that provides the right type of calm in
between our social life with friends. We can't be social
all the time without getting exhausted--and it's much
harder to be friendly when we are exhausted, especially if
we are much exhausted. So a healthy good life needs these
contrasts.

So, the Personal Computer is not supposed to be fluid
and unpredictable and moody and someone you have to talk
convincingly too. No, it is supposed to be just like pen
and paper but with this wonderful capacity it has to
provide some feedback, some machine-movement, in relation
to what you type into the machine.

And then there are some things the machine allows us to
do easy--like sending information across distances, and
keeping tracks of numbers if you run a shop, and so on:
this is all part of the Personal Computer.

But, as you perhaps know, the Personal Computer doesn't
do a thing unless it is given a program. And that program
it carries out to the letter.

If you put one letter wrong, it can't do that program.
Is that stupidty? It is neither exactly stupidity nor its
opposite, smart,--for a machine isn't ever smart. We are
not trying to make it smart--at least, not if we have a
little education and know a little bit about what's what
in life.

So, I'm not saying that these are the opinions of every
one who has ever worked with computers. Some people try to
define words in a different way, and argue that some

22



G15 PMN PROGRAMMING FOR KIDS

machines, or programs, somehow can be smart or intelligent
-—and I know their arguments fairly well, I think, and I
also think I understand their arguments, perhaps even
better than they do. And I think they are just plainly
wrong about it, but it's something that requires lots of
time to think clearly about. Years, even. So I mention
this in order for you to be aware that I am talking you
through a view of Personal Computers that I think is
right and scientific and true but I'm not claiming that
this is, or always has been, the universal opinion.

Right? So I give you my take on the computer, and I
think you can go a long, long way with it, and gets lots
of fun with computers.

Let's get going, then. Last time I think we got the PC to
display your name ten times. We typed some stuff into the
terminal and when we rebooted the PC--if you rebooted it
afterwards--it would have 'forgotten' all about it. Let's
this time do something that stays in cards even if we
reboot the PC, turn it off and on again.

So, perhaps you start up the PC just like last time, all
the way into the terminal, into the TF terminal. Once you
have done it, you see that bright green square and so on.
It's a good way to check that you have control over the
machine.

So let's do that.

Then, instead of typing in anything at once to the
terminal, we'll leave it, store something to a card or
two, then get back into the terminal and tell it to 'have
a look' at these cards.

Now, when you read this, you may notice that when I said
'forgot' just above, and 'have a look at' here, I put some
quote signs (' or ", single or double) around these
phrases. Why do you think that is?

Because otherwise we might start talking about machines
as if they were humans and alive too easily. It's nice to
be able to say, oh, the machine 'forgot' the program. That
has a nice easy tone about it. But to be precise, we can
say, that program wasn't stored on the harddisk. Such
precise talk is a little boring sometimes, especially if

23



G15 PMN PROGRAMMING FOR KIDS

we do it all the time. So to loosen up and be a little
playful about it, we use the quotes, and when we use
quotes around a phrase, we remind us that we aren't quite
saying it precisely--such as when we talk of letting the
machine 'have a look at' something. Even if we put a
camera to the PC and makes a program go through the camera
input, it doesn't mean that the PC is looking at anything
at all. It is never 'looking'. It is perhaps matching
patterns against patterns.

So did you quit the terminal, after you started it up?
This you probably did this way. You typed

qu
and pressed lineshift. Right?

Next press a key--when we write something like <CTR> or
<PGUP> or <HOME> we usually mean, there is a button on the
keyboard with such letters on it, find that key and press
it. So now we say, press
<HOME>

And that gets you to a card that has the menu for G15 PMN.
It is, of course, card 15 in disk G, which we can also
write as G1l5 or G:15 or, with lowercase letters, gl5.

Inside texts like this, it is a good thing to write it
with that : colon inside, because then we'll quickly know
what type of thing it is. I'll try to remember to write
such as g:15 and i:1 in this book, even though when you
are typing it into the PC, then almost always you must
write it without colon. But the text gets more readable
this way. In some places where we have long listings,
we might add something around these, like <i:1>.

Anyhow!

We are next going to put some stuff to card i:1 and i:2.

I hope that's okay with your PC? Or has somebody else,
or you earlier on, stored something on i:1 & i:2? If so,
I'm sure you'll find out how to put it on another place;
but if you have a 'clean' machine, set up just to learn
Gl15 PMN programming, with the TF terminal app put into it,
then the i:1 and i:2 cards are usually ready for anything

24



G15 PMN PROGRAMMING FOR KIDS

you like them to have. As are i:1000 and i:1000000 for

that matter. And so also k:1, k:2, 1:1 and 1l:2. Just to
mention some of the many cards you can use for various

things from disk C to disk L.

There are disks A and B also, but they are not available
except when the PC starts up and fetches its startup
stuff. So C to L are available, and disk i, j, k, 1 are
very often used during programming and writing, and often
you find that a finished program is put to disk £, right
after the Terminal, which often may occupy a couple of
thousand cards on disk f.

Not that you have to remember all this.

So let's go and have a look at i:l. Press

<CTR>-L
that is to say, press <CTR> button and, while holding it
in, give the L button a quick push and then let go of the
hold on the <CTR> button.

Then the PC should ask you about which card, or
"card-id" you wish to see. "Card-id" is sometimes written
just "CID", by the way, if you see those letters somewhere
--you probably will, sooner or later, when you learn G15
PMN programming. Card-id means a letter and then a number,
and it should be typed in with lowercase letters (even if
it shows quite like capital letters in robotfont;
remember that robotfont puts a dot above and to the right
of a letter it considers to be a capital or big letter).

So you type into the PC, usually without colon as said,

i1
and press lineshift. Now the screen should shift and at
the lower left part of it, it says i:1 or so, doesn't it?
Right before that it says MENU or EDIT mode. That has to
do with the <CTR>-W stuff.

Now it may be that the i:1 card is perfectly blank, but
suppose it isn't--or suppose you put something there now,
and you want to put something different there the next
time, so you should want to know of a really quick way to
cleanse--not just card i:1l, but also several more, i:2,
and so on, let's say up to i:15. Right? So this is a

25



G15 PMN PROGRAMMING FOR KIDS

===>USEFUL THING TO KNOW: CLEANSE CARDS FAST

To cleanse a number of cards that you wish to program on.
Here's how to cleanse 15 cards starting with i:1, but you
can use it to cleanse any quantity of cards, anywhere.

Click

<HOME>
key and get to the main g:15 menu card. If it says {EDIT}
at the lower left part of it, click

<CTR>-W
so it changes to {MENU}. Then click on the :colon where it
says D:10. You get up a different menu. (The colon is used
to jump quickly between cards. The arrow- or flower-like /
type of thing is used to start programs.)

Then find the place it says E:5 and click on that colon.

Then find the place where it says E/5000 and click on
the arrow or flower-like thingy between E and 5000.

You get up a cleanser program. Be careful to type right
next, or you may remove more stuff from the PC than you
want to (so that the PC has to be 'reinstalled' with G15
PMN). All right? So, with attention, type

15

for that's the number of cards. Press lineshift.
i

for that's the disk. Press lineshift. Type
1

for that's the start card on that disk. Press lineshift.
It should then say DONE! Press lineshift and you can
press
<HOME>
to get back to the main G15 menu card.

So such "Useful things to know" are meant to stand out in
the chapters where they occur, so you can fairly easily
find them by leafing back and forth in the book. That's
why there is an arrow in front of the words and the words
are all in capital letter. Sometimes there will be even
more than one such "Useful things" in a chapter.

To cleanse cards doesn't mean that they become totally
empty. The cards are there, and there has gotta be
something on them. Even a blank, a " " type of thing, is

26



G15 PMN PROGRAMMING FOR KIDS

something rather than nothing, right? You type it in and
although a blank isn't shown as anything, it is still a
blank. And yet, when we cleanse cards the way we just did
we don't put blanks into them, but something slightly more
mysterious, which is called a "nil". Think of it as more
or less the same as "null", but even less of a thing than
null or zero. A nil (sometimes called a "nil character" or
a "nilchar") is a highly useful thing. When you write in a
program on cards, it may take more than one card. But how
is the PC to know that you don't want it to 'look at' more
than just a handful of cards, or however many are in your
program? The answer is that it stops 'looking' for cards
when it comes across this guy "nil".
So let's see. Let's go to the card we cleansed and see
what it looks like. Press
<CTR>-L

and type, without any colon, and in lowercase as usual,
i1

and press lineshift.

So you see these funny signs--not quite letters, not
quite numbers, more like a drawing of a square, or a piece
of paper, or perhaps a folder with papers.

Now we are going to get these nil-chaps, these nil-chars
completely away and fill up that card i:1 just with blanks
In that way, we can begin to put our program there, the
program that displays your name ten times.

So, do a
[RIGHTCLICK]
on the mouse. When we want the mouse to be used, we can
put the [ ] signs around, but when we want a particular

key like <HOME> on the keyboard, we use the < > signs
around, okay?

The [RIGHTCLICK], that is to say, the click on the
right side of the mouse, allows you to change the card--
also called EDIT the card. So the word EDIT appears on
the screen somewhere.

Now you can erase all of the screen quickly. First use

<ARROWS>
to get to the upper left corner, if that half-dark line,
the text marker, isn't already on the upper left corner.

27



G15 PMN PROGRAMMING FOR KIDS

(When we say <ARROWS> we mean any one of the four slim
arrows that are together on the keyboard, often to the
right of it--these we can also call <ARROW-UP>,
<ARROW-RIGHT>, <ARROW-BENEATH> and <ARROW-LEFT>.)

Then press

<TABL>
also called "tabulator" or "indent" key, the key on the
left on the keyboard--usually to the left of "Q", where
it says eg TAB or TABL or -->| or something like that. I
like to call it just <TABL>.

When you press it, you'll see that it clears away a
handful or two of those peculiar nil-chappies. Press it
several times. Then press

<ENTER>
or what we call lineshift (I will sometimes call it
<ENTER>) .

You see that <ENTER> is really practical here, it has
the same effect as <ARROW-BENEATH> followed by many
<LEFT-ARROW>. Continue to use <TABL> to cleanse that line.
See how fast you can cleanse every bit of the card!

Two other keys it is very handy to know about when you
do anything with these cards.

The first is <END>, which moves to the end of the line.
Try it.

The second is the combination <CTR>-R, which moves to
the right column--about the middle, perhaps a touch to the
right of the middle. This is used all the time when we
program because we have room for both a left column and a
right column when we put our programs on the cards, since
each line is quite slim.

What else? Oh, I almost forgot. We should now save the
blank card. It's ready to be used. So, when you are
satisfied that there are blanks everywhere on the card,
press

<CTR>-S
and type

i1l
and press lineshift. The card is now saved with blanks
instead of the nil's. Try press

<PGDN>

28



G15 PMN PROGRAMMING FOR KIDS

to go to the next card, card i:2. Then press

<PGUP>
to go one 'page' or card up, that is to say, to the card
just before i:2, namely the i:1 that we were working at.
If you used <CTR>-S correctly, you should now see a
perfectly blank card there (apart from the usual text at
the bottom of it which tells which card it is and so on).

So now it's time to put our program there. I suppose
learning is also about repetition, so I think that we
should begin by putting exactly the same program as we
made in chapter 1 on the card here, and add no fancy stuff
at all. Then we can adjust it a little bit and see what
more can be produced with little effort.

Just one little thing we'll add. Remember that Clear
Entire screen command, those two letters CE? That's really
handy to put in first. So here's what I suggest we'll do
next. Press <PGDN> or <PGUP> to get back to i:l.

In case the card says MENU mode rather than EDIT mode,
do a

[RIGHTCLICK]
and in case the text marker line isn't at the beginning
of the first line, press a lineshift then <ARROW-UP> to
get it right at the beginning of the first line. Ready?
Then let's type! With lineshift after each line:

sayit=

ce

11:10

&yourname&

lo.
Be sure it's all lowercase, even though, when you type it
into the card, it looks more like LL and LO than 11 and
lo. If it is uppercase, these letters get a dot above
them. That's how uppercase looks in the robotfont!

This time we call our new word 'sayit', if that's fine
with you. The rule for choosing new such words is that it
is short, more than two letters, lowercase, without funny
signs, and that it isn't already been given a meaning in
the TF terminal (we'll look into a way to check that
fast). But you can call your new word abla or difta or
progeny or what you want, as long as you remember what it

29



G15 PMN PROGRAMMING FOR KIDS

is when you are going to start it up. Note that digits are
okay in these little program names, when not in the first
position. So hi3 is fine, 3hi isn't.

Be sure now to save the program card back to the i:1l
position very beautifully. Here's how:

<CTR-S>
then, as it asks where to save it, type, without colon,

il
and that's it. Ready to try the program? Then we must, the
way we have set it up now (we'll look at ways to set it up
for even faster starts), first tell TF where the program
starts--at i:l--then we must write 'sayit' or whatever you
called the program. Ready? Super. Then press

<HOME>
and click

<CTR>-W
and click on the :colon between H and 1 on the top there.
That gets you to the h:1 menu, where I think is where you
start the TF terminal, though we can set it up in many
other ways. At the menu H:1, click on the F/1 thingy as
you by now have done several times if you have done all
what we have said so far in this book, and the terminal
starts up with its little graphics squares and so on.

Now you have the terminal up, and we're now going to
tell the terminal to go through the cards--or the card, in
our case, since it's just one card. You must then find, on
the keyboard, the © sign which is usually found by the
combination <SHIFT>-6, since it is usually above the digit
6. If you press other things, just press the <== key,
which we also call <BACKSPACE> or just <BSPACE>. Ready?
Then type:

~il

cc
with lineshift after each line. If you have done it right,
it will say a large YES! In case it says something else,
just go back and have a look at the program and try again.
(Then you press lineshift, type qu and press lineshift,
and do a <CTR>-L where you type il and press lineshift.
Check the program, go back to the terminal and type it
carefully once more. You'll get it right! And keep spirits

30



G15 PMN PROGRAMMING FOR KIDS

up no matter what the PC says. It forgives instantly, and
forgets all mistakes completely and forever.)

If you called the program gringring or propanol or
slartibart type it in, otherwise, if you called it just
"sayit" as I suggested, type it in:

sayit
and the screen should get completely blank and the name
you love the most of all appears ten times in a nice font.

Restart the PC completely and go straight into the
terminal and type the "il and the cc again, and when you
type 'sayit' or whatever you called it, it does it again.

And unless this is a PC that somebody cleanses after-
wards, it will work tomorrow also: for cards don't require
electricity to keep on their data.

And in getting the PC to do this, you have learned loads
of things--loads of them. It's time to congratulate
yourself and be in a mood of celebration and take a break
and feel the joy of the full command you are having over
your personal computers, your G15 PMN computers.

Part A, chapter 3: CONTROLLING THE DOTS ON THE DISPLAY

Before each programming lesson--if 'lesson' is the right
word for these chapters--let's open our minds a little

31



G15 PMN PROGRAMMING FOR KIDS

bit and just relax and take in the broader picture.

Sometimes, when you program, you may feel that all the
world is in order--because you find that the computer
responds perfectly to what you type into it, and what you
type into it reflects perfectly what you think. And maybe
you get a kick out of that. A bit of self-confidence. And
when you then leave the machine and go out and enjoy
yourself with people, you may feel that you have a glow
inside, a kind of 'carrier wave' or inner force. Yes,
programming can give you this.

Now there is a really interesting type of study done by
an austrian named Asberger a long time ago,--he found out,
put very simply, that some people aren't much tuned into
other people's intentions--what they want, you know, and
why they move about the way they do, why they gesticulate
the way they do--and that just these people may be great
at doing something which requires great concentration to
detail. That's a simplification and I blend in some later
studies in my summary there.

Instead of--as maybe Mr. Asberger did--thinking of this
as some kind of trouble, I would call it a personality
mode, or a person mode,--just as we can switch between
Edit mode and Menu mode with the cards. Sometimes you just
ignore other people's intentions and at other times you
are really tuned into other people's intentions--you seem
to know what they want in a flash. So, the question I
think is cool is this: what if somebody is a little bit
stuck in one mode and find trouble switching to the other
mode? You follow? And how can programming help?

First, let's imagine somebody who is a little bit stuck
in not tuning to other people. That person will probably
have an easy time concentrating on the computer. How can
he, or she--let's say "she", it's more positive--how can
she learn to understand other people's behaviour more, by
programming?

Well, just think of what it is to program: you put in a
program and if it is a bit long, chances are great that
the PC will do something other than what you planned. And
to fix it, you must look at the behaviour of the PC, go
back to the program and see and look and understand and

32



G15 PMN PROGRAMMING FOR KIDS

then you fix it. So the PC has a behaviour and you get to
learn to think through what lies behind that behaviour. As
you get good at programming, you get self-confidence, and
that--as said--helps you to be great social, too. So that
takes care of that. Admittedly, it's a long way from
thinking about the behaviour--or activity, to be more
correct in language--of a machine, and that of a human
being with a living mind. But it can be seen as a
beginning--not all things about why people do what they

do is so complicated, right?

The other way, those who are great at understanding
other people's behaviour--they catch their plans without
having to have them explained, all that--they may however
find difficulty concentrating. So when the PC is in front
of them, demanding nothing, it can help produce calmness.
And their understanding of other's motives, plans, goals,
intentions, means that they are good at thinking through
this kind of stuff--and then all they have to do to learn
programming is to translate plans into a series of steps
that fits what the PC can 'make sense' of. So he, or she,
--again, let's say "she"--she will learn to program by
admitting to herself that she's already thinking through
quite complex things on behalf of other people. The PC is
much more simple. And the value of being patient with the
PC and pick up its language is the great sense of calmness
and the self-confidence and relaxation it can produce,
among other things.

Then, for both types of persons--those who are mostly
social, and those who are more, shall we say, self-
centered--work around a PC can very easily become social.
It can become a bridge, to sit near the PC and help each
other and sometimes show off to one another.

Anyway, let's begin on some work, to get on with the next
step. Last time we actually got a program put to cards--
some would say to 'file'--and we got the PC to 'have a
look' at these cards and follow the instructions on them.
Some would call this 'to compile' cards. We got the PC
to 'compile' the program. That's a way to put it. If you
like, the two 'c's we used--remember we wrote, into the

33



G15 PMN PROGRAMMING FOR KIDS

terminal, something like "il and then 'cc' on the next
line? We could maybe think of this as Compile Cards.

These two-letter, and sometimes one-letter, words or
what we should call them--commands, maybe--are also called
pre-defined words, or PD words. "Pre-" means 'already'.
And "define" is what we do when we tell the meaning of a
word. It isn't as though we cannot make new PD words. We
can--but that's hardly necessary before we are doing
really huge programming projects, like an entirely new
type of game that nobody has thought about before. You can
do huge amounts of programming without making new two-
letter commands. But to make new words of three or more
letters, that's what you have already begun doing.

Let's keep it freshly in our minds what we've just been
through--when it comes to putting stuff to cards and
getting the PC to 'have a look' at it. So could you get
up card i:1 again? You start up the PC, mount (with mnt)
the 3333333 thingy--if it is not already mounted in the
way it is set up for you--and you press <CTR>-L and type
in

il
Got it? And, to be sure it is in Edit mode--so we can
change what's on the card--do a [RIGHTCLICK] on the
mouse. (In case somebody else have been messing about
with your cards, go back and do the cleanser thing that
we explained in the previous chapter--'useful thing to
know' was the heading inside that chapter, right?)

So let's take away what's on that card, use <ARROWS>
and put the text marker line on the uppermost left
position, and then press <TABL> key to blank out a
lot of them at a time. (Remember that key? The -->|
type of button on the left side of the keyboard.)

I have in mind that we first get some numbers out of the
machine, then do something with those numbers to change
them into bright little green stars on the screen. How
about that? So let's have a look on this first--just
numbers--let's call it 'ournums' or something:

ournums=

34



G15 PMN PROGRAMMING FOR KIDS

11:15

i1

nn

lo.
Now before you type this in, let's see how similar it is
to our earlier program. It begins with a new word, which
then has an equal-sign (=) in it. The last word finishes
with a dot after it (.). The dot, when typed into the
cards, is a whole little block of black on the screen, but
when inside a book it's typically just a little spot. So
you see the cards editor--also called CAR or CAR editor
(because we drive the cards a little like we can drive a
car)--is really friendly towards our programming. It will
be very clear at once whether we have typed in, or for-
gotten about, such a thing as the final dot in each little
program or, as we also call them, our 'functions'.

Anyway. More similarities? Yes, you can see that again
we have the two letters 11 in the first line after the
new word, and lo on the last line. That means we're into
repetition in this little program also. How many
reptitions? 15 this time, not just 10.

Actually, last time we had a 'ce' to clear the screen
on the first line, just before the 11: stuff. But it isn't
really necessary here. Let's keep it all, this time, as
simple as we can.

So we'll first get this program to produce the numbers
1 to 15. Then we'll calculate them up to become 10 to 150.
Having done that, we'll produce some bright-green stars on
the screen using these numbers--just a very simple line of
very tiny dots, nothing fancy or varied this time (we'll
come back to how we can vary it). We're gonna make a
vertical line of bright star-like dots.

You see there is a two-letter word, or command there--
that we haven't used before--nn. Just as both pp and b9
can be used to print tiny texts on the screen, so can nn
be used to print any number. We'll soon look into ways of
printing also long texts. By the way, we say "print" as a
way to talk about putting something to the PC screen. Why
we sometimes say print is, I suppose, because in the first
days of computing there weren't any displays, just

35



G15 PMN PROGRAMMING FOR KIDS

printers making a lot of noise putting some digits and
letters to paper each time the computer was going to give
some results. So 'to print' means the same as 'to show',
when we speak compu-lingo (unless we are really talking
about connecting a printer to the computer and using it).

Just before the nn, by the way, is a new little command
which has nothing to do with cards and all to do with the
11: and lo type of looping or repeating something, and
that's il. This means, let's have the count, or what is
also called the "index"--for the first repetition. (So if
we have several on top of each other, we use i2, i3 and
so on up to i9 and then, the tenth, ix. We'll come back to
that.)

So the 'il' on one line puts a number 'on the table' as
it were--also called, 'on the stack'--and then the 'nn’
picks it up again and shows it on the screen. We'll see
enough examples of this soon, so you'll understand it fast
enough, don't worry about it. It will become simple.

Alright. Do you mind typing this in? It would be nice if
you can train your fingers to get used to this type of
stuff more and more; that's part of programming--not just
to think with the head and your heart, but let your
fingers learn to dance on the keyboard.

For the moment, just type it in from the top left of the
card. We'll look into ways of typing with blank lines and
the use of the second column soon enough, so that it gets
easier to change the program.

When you're satisfied, save the card as last time: Click

<CTR-S>

and, with a lineshift after, type in
il

and then, to be sure, press
<PGDN>

to have a look at i:2. That card should be empty. (If not,
get it empty by the way we showed last time. There are
other ways we can do that also, we'll come to that.) And
it's almost certainly empty if it's full of these small
squares with a sort of 'thumbs up' on its right side

(some stuff can 'hide' inside such signs, though, and
we'll come to a way to check that out).

36



G15 PMN PROGRAMMING FOR KIDS

Then you could press
<PGUP>
and have a look at i:1 again. Does it look fine? No extra
blanks? No sudden uppercases? Letters where there should
be letters--the small 1 (L, not the digit 1), for instance
--before the colon : and before the digits 1 and 5, on the
second line?

When you're satisfied with how the program looks--the
compu-lingua word for it--that is to say, the computer
technical word for it--is "syntax"--a word used also in
grammars when it comes to spellings and such--when you're
satisified, then, go into the TF terminal and start it up.
So, press

<HOME>
and press

<CTR>-W
to get to Menu mode. Click on the colon inside H:1 on top
there. In that h:1 card, click on the line in F/1 there.
That starts it up, as you know. In the terminal, type

~il

cc
How did it work? If you typed it perfectly and saved it,
the computer will say a big bright YES! in upper left
corner (something we didn't clear away with a 'ce'). Then
you can type whatever we called our little program this
time, ournums. So type:

ournums
and press lineshift. What the screen should show, then, is

1

2

3
and up to 15.

Does the program work? If not, you have the fortune of
learning some program correction. For all I know the PC
might have stopped completely because something was typed
in differently. Suppose you left out the dot. Suppose you
didn't put in the 'lo'. Stuff like that. Perhaps you have
to type some rubbish and press lineshift many times to get
any response from the PC again. Maybe you even have to
push the power button (perhaps even hold it in for a good

37



G15 PMN PROGRAMMING FOR KIDS

many seconds) in order to restart the PC. That's something
you should do in excellent spirits and with good humour.

The golden rule of thumb of program correction is this:
THE MORE ABSURDLY WRONG THE PROGRAM BeHAVES, THEN,
USUALLY, THE MORE EASY IT IS TO FIX IT.

Whatever is the case, you should at some stage be able to
type qu or so, and get back to i:1 card and fix it up and
get it to run. Have you done it? Then let's multiply the
number by ten. For this we just put in the number '10' and
the multiply command, which is--you can just about guess
it from our earlier commands, pp and nn,--yes, it is 'mm'.
So, get back to card i:1 again if you don't mind, and

rewrite it to this,--and we'll soon enough produce some
star-like dots--or 'pixels' as they are called--on the
screen from these numbers. Here we go:

ournums=

11:15

i1

10

mm

nn

lo.
Save it to i:1, start up the terminal again in its h:l
card, and do the "il and the cc and type

ournums
and now we get:
10
20
30

and all the way up to 150. Note that you could write, if
you like, a million instead of 10 there. And you could
write 11:100 instead of 11:15, and the PC is equally
happy. (I should say, 'happy', sometimes I forget to put
in the quote-signs.) But take care once a number gets
larger than twice a thousand million--that is to say,

take care when numbers get bigger than two billion. That's
about the size of what the PC 'likes' to handle. Up to
2,000,000,000 (usually without those commas although we

38



G15 PMN PROGRAMMING FOR KIDS

can instruct it to put in those commas), and a little
more, and the numbers can go into the minus region as
well.

So though we begin learning programming with really
small and neat numbers, it doesn't mean that we aren't
also learning how to put the PC to hard and complex work
with digits that are thousands or even millions of times
bigger. When you learn to handle inputs from keyboard and
mouse and output to the screen, and storage to cards and
getting stuff from cards into a program again, and also
sometimes connect to other machinery from a PC, then you
can, by equally simple commands--though usually very many
of them indeed--you can get a PC to do anything that a PC
can do. These things are the nuts and bolts, the alphabet,
we might say, that we need handle so as to build up our
programming language skills.

There are many ways to program, and there are many ways
also to make programming languages. A guy named Charles
"Chuck" Moore worked with simple computers in the 1960s
to control motors connected to such as telescopes to look
at the stars. And he, more than anyone else I know of in
computer history, pioneered the work on using a 'stack' of
numbers for the simple commands of a programming language
to 'speak together'. This enormously elegant way shines
all the way back to the work he did in the 1960s, although
many things had to be made better for a really good and
useful and easy programming language to result form it in
the long run. In the making of G15 PMN we have learned
from many places, but the heart is with the impulse from
Mr Moore.

Let's next remake the program so it puts dots on the
screen. Now I'm typing this into the B9edit editor, and I
have the benefit of just copying what we have already
programmed earlier as 'somenums' and putting it next here,
and modifying it. Have a look at this:

ourstars=
11:50

800

il

10

39



G15 PMN PROGRAMMING FOR KIDS

mm
px
lo.
So I changed the 11:15 to 11:50. That's exactly the same
type of command, just 50 repetitions instead of 15. So we
get some more of these star-like dots we want to produce.

Then there is the number 800. That can be any number
you like from about 0 to about 1023, and it goes from the
entire left of the screen on the G15 PMN machine to the
entire right. 800 means much to the right but not at all
on the edge of it. In fact, it's about where we usually
type stuff into the terminal.

What else is new? The name, 'ourstars'. (Call it what
you want, of course, as usual, as long as it is unused.)

And then the 'px'. Now the 'px' command means 'pixel'--
in other words, a pixel should be put on the screen at the
place where we want it. It expects that 'on the table', as
it were, --or on the 'stack' of numbers, we have two
numbers. The first tells the left-right position and the
second--the one which we calculate by means of our '10'
and 'mm'--the multiply by ten thingy--is the vertical
position. Left-right numbers go from 0 to about 1023.

The vertical numbers go from 0 to about 767. That's how a
Gl15 PMN screen is defined. Once you know that, you can
compose the screen as you like it. Some programming
languages try to handle any type of screen but it is my
experience that the stage of the 'dance' of the program
must be known for our programs to be looking good and easy
to think with and work with.

With 1024 times 768 small dots, you can get a full book-
width of beautiful small letters and there is still room
for margins. You can have two dozens of lines of text,
with good spacing in between them. It is a size found to
be great for lots of good work, that type of 1024x768
display. It can be enlarged so big posters can show on the
wall, or made rather small to fit in robots. Wider
displays tend to go together with a kind of work that
flips between several tasks in a distracting way. So you
can rest assured that 1024x768 is a great type of
display. (The reason we say 1024 'times' 768 is that by

40



G15 PMN PROGRAMMING FOR KIDS

multiplying the number of dots horisontally with the
number of dots vertically we get the total number of

dots on the screen--somewhere above 750,000.) Each of the
dots can vary in 64 tones of brightness and that is more
than enough to present beautiful photos with great detail.
The bright spring green, or yellow-green, or computer-
green, is ideal to emphasize an optimistic outlook, health
and beauty, and studies have shown the eyes like that
color more than most other colors when it comes to a
working environment.

When we count from 0 up to 3, we get four numbers,
right? 0, 1, 2, 3. So that's why 0 to 1023 means 1024
dots--or 'pixels' as we should get used to call them. A
picture-bit--that's what a 'pixels' is about.

So also when we count from 0 up to 7, we get eight
numbers: 0, 1, 2, 3, 4, 5, 6, 7 is eight because the zero
counts as a number. So 0 to 767 pixels means 768 pixels
in all. It is of great value to know what the maximum and
the minimum number is when we are going to use a command
or something in programming: then the machine won't
protest.

So px expects two numbers. We give it 800--that means on
the right side, about--and then we give it a number that
varies from 10, via 20, 30 and so forth, up to 500. So
both of these numbers make sense to give to px. Try the
program!

First, you put it to card i:1 the way you know--get up
the card by <CTR>-L and then type il and press lineshift.
Press [RIGHTCLICK] on the mouse, wipe out what you want to
whipe out with such as <TABL> key, and type it in. Then
press <HOME> and <CTR>-W and get to card h:1 and click on
the place you click there to start the terminal. In the
terminal, type

~il

cc
and then type

ourstars
with lineshift after each line. With luck, you get a row
of bright little dots, vaguely like shining stars, right
where you wrote 'ourstars' and underneath it, in that

41



G15 PMN PROGRAMMING FOR KIDS

column.

Fix the program if it needs to get fixed. And now you
have entered the world of graphics programming and you
deserve to have that glowing feeling which comes from
having set a goal and achieved it.

Part A, chapter 4: PUTTING YOUR THINKING TO 0'S AND 1'S

So how is it going with your programming? We could make a
list of what we've been through now, but one of the really
nice things about programming is that if you have some
idea of what you're looking for, you can usually get the
PC to look up some texts that will tell you just what you
want. There are texts--some of them more readable than
others--inside your PC in this very moment that tells
something about every command and word in the G15 PMN
language. A few of them--the earliest, smallest set of
two-letter commands--are briefly explained when you click
on the right side of the g:15 menu page, the d:70910 thing
(press <PgDn> after it to see list, click again--it is a
bit tough to read at first). More of them can be found in
other ways, including by the use of a socalled 'scan'
program inside the terminal--that we'll look into later.
Also, the things you need most often when you do G15 PMN

42



G15 PMN PROGRAMMING FOR KIDS

programming come up very often, so why make lists? After
all, there are far fewer core words in G15 PMN than there
are in English and every one of them can be explained very
clearly, whereas in English, words float over and into
each other and meanings also shift with the occasion. So
English is wonderfully suited for thinking about all life
just as G1l5 PMN is wonderfully suited to concentrate on
numbers and getting the PC to do what you want. And, by
such concentration, you also sharpen your logic and that,
in turn, can help your English. Good sharp logic is also
a good thing to have as background for making humorous
comments (a teacher of university logic that I used to
spend much time with had a reputation as a considerable
humorist).

I have in mind that we take up the work on making more
varied type of 'stars', or dots on the screen, soon enough
--so please keep it in mind, what we worked with in the
previous chapter. But we'll wait a little bit. I thought
it could be as well, in this chapter, that we do a little
more work with the terminal and pick up a few things about
how the PC likes to work with 1's and 0's and how it likes
to stack numbers on top of each other so we can pick them
from there again.

Have you heard the phrase 'boolean logic'? If not, you
have heard it now. Never mind why it is called that way,
it has to do with some ancient person who worked with that
type of stuff long before computers came around. But what
you'll work with in this chapter will teach you something
which can be called just that--boolean logic.

When you take decisions in daily life, you sometimes use
logic--as when you talk things over with others and then
you decide what to do--and at other times, you just think
things through, and then in addition, you make guesses,
and dream up solutions in some way that is or isn't quite
like talking things through,--sometimes it may be very
right to do it this way--then we call it 'intuition’'.

When you talk and reason, you use many forms of logic.
"Logic" means, put simply, that we use language, we talk,
so as to find things out and reason one thing after
another.

43



G15 PMN PROGRAMMING FOR KIDS

The machine logic--the PC logic of 1's and 0's--is very
simple and it is wonderful that you yourself are not that
simple. So be careful not to be too enthusiastic about
what we will study in this chapter! Don't fall in love
with machine logic, but keep thinking like a human! Those
who have fallen too much in love with machine logic we
think of as a bit strange, we might call them 'nerds'--and
so that's why I give these warnings, against getting too
stuck on this way of thinking that we'll do in this
chapter. Having said that, it's wonderful to be able to
also do it that way, when it is right. If many people have
to talk things over, it's a great thing if you can 1lift
out some simple arguments and show how they belong
together. Or if somebody claims that they have perfect
logic, and they don't, you may be better able to spot it
if you have learned to handle the 0'l and 1's in the way
we begin to study here, when we talk of boolean logic.

So, let's start up the terminal. If you don't remember how
to do it, go back to the first chapter.

Then we'll do some thinking about 1's and 0's--which is
a way in which the electronics, the machinery of the
computer, can handle really easily. Think of 'l' as a way
to tell the PC 'yes' and '0' as another way of saying
'no'.

In real life, we often don't quite know whether some-
thing is fully one way or the other way. So real life is
often more 'analog'--more flowing, fluid, dancing. PCs
are, in contrast, more 'digital'--a word which comes from
an ancient latin word which refers to the toes of your
feet, if I remember correctly. Today, when we say that
something is digital, we typically mean that it has a lot
to do with 0's and 1's, or with computers.

As a first little exercise, let's type in some 0's and
some 1's to the computer, with lineshift after. For
instance, you might type something like this:

1

0
0
1

44



G15 PMN PROGRAMMING FOR KIDS

1
That's five numbers--five 'bits', we might say, for a
'bit' is another word for dealing with 0's and 1's. So we
have five bits. Where did they go? Are they still there?
Of course. And now let's get them out. Type

nn
and you get the last bit, 1. Type

nn
again, and as you press lineshift, you get the second to
last bit, also a 1. Type a third

nn
and you get a 0 on the screen. Then another 0. Then a 1.

So this teaches us something about the socalled 'stack’,
or the table, as it were, where we can imagine that the
PC puts numbers Jjust as we can put things or papers on top
of each other. And that is that the last thingy is picked
first. Some want to call this for a "LIFO" stack: it is a
"last in, first out" type of stack. This is opposite to
how it is in real life if a group of people are queueing
up in front of a shop or cafe door about to open: then it
is obviously so that the first who came along to the door
is the first to get through--a bit like 'FIFO', "first in
first out". Of course, numbers we type into the terminal
are more like papers or flat things we put on top of
each other, where it is convenient to pick the last thing
first.

Let's try something more. Let us imagine that the first
number we put to the stack is an answer to a question,
such as whether it is sunny today or not; and the second
number is answer to another, related question, as to
whether it is raining today or not. For some days it could
be both and just those days it could be a rainbow, right?

So let's type:

rainbow=

an.
Now this is a really short little program, just one line
after the = line. We call the little program 'rainbow',
but we really mean a longer type of thing--namely, 'does
it make sense to look for a rainbow on such a day?'. All
this long question is shortened into that word, 'rainbow'.

45



G15 PMN PROGRAMMING FOR KIDS

And then there is that lone word, 'an'. It sounds 1like
'and' but it is just two letters long, like so many of the
other little commands or words have seen so far. Let's try
it. Try to type in these four lines next:

1

1

rainbow

nn
The first 'l' says: 'yes, it is sunny today'. The second
says: 'yes, it is raining today'. And after the PC does
the little program 'rainbow' and then 'nn' to show what's
on top of the stack, out comes '1l'.

In other words, it makes sense to look for a rainbow in

such a case. Try now, if you have the patience,

0

1

rainbow

nn
and it says '0'. Try also,

1

0

rainbow

nn
and again it says '0'. And it will say '0' also if you try

0

0

rainbow

nn
So now you have learned something about what we can call,
using big words, for the "Boolean AND"--which is just 'an'
in G15 PMN--and that is that it gives 1 as result when
both its inputs are 1. In all other cases it gives '0'.

The most important words, or 'functions', to use that
fine name, in Boolean logic are AND, OR and NOT, and in
Gl5 PMN they are 'an', 'or' and 'n?'. They are really very
simple and as a group extremely handy, as we will see over
and over again. So it's worth paying attention to. They
are part of the motor of perhaps all programs there are,
at least all programs of any size.

Let's continue with the idea that we give our programs

46



G15 PMN PROGRAMMING FOR KIDS

two numbers, two bits, and the first is the answer as to
whether it is sunny, and the second is the answer as to
whether it rains. When the first answer is 'yes' and the
second is 'no', it makes sense to consider whether to go
to the beach, right? Let's say it does. And let's say we
want a tiny little program to hold this type of logic. It
isn't very useful on its own, but by grasping how the PC
juggles these 0'l and 1's around you are learning to steer
it really well.
So let's put that 'n?' to use. It's really unusual that
a second sign in a command is any other than a letter, but
'n?' is a very important little command. It tells a 1 to
become a 0 and a 0 to become a 1. You can think of it as a
question, ie, "is it no?". Yes, it is a no. No, it isn't a
no. So it converts a yes to a no and a no to a yes. That's
one way of putting it.
Then, let's type in this, and experiment a little:

beach=

n?

an.
You remember that we type in, first, is the sun shining?,
second, is it raining? We want to go to the beach, maybe,
if it is so that the sun is shining and it is not so that
it is raining. Before we study how it works, let's try it:

1

0

beach

nn
Type in that, with lineshifts, and it says 'l'. But that's
precisely it: 1=it is sunny, 0=it isn't raining. So let's
consider the beach! In every other case it gives 0. Just
try such as:

0

0

beach

nn
and it gives a '0'. Or,

0

1

beach

47



G15 PMN PROGRAMMING FOR KIDS

nn
and it also gives a '0'. So how does the PC know which of
the two numbers it is going to apply the 'n?' to? The
answer is that it does it quite automatically with the
most recent number. So since the first question is, is it
sunny, and the second is, is it raining, the 'n?' will
work on the second answer, because it is the last one--the
most recent--it is the answer on the top of the stack.

But what if we had the answers in the opposite sequence?
What if we first answered, 'is it raining', then answered,
'is it sunny?'. Could we make a function to handle that as
well? Yes, we could. We just throw in the one-letter
command 'w', which tells the PC that we want the opposite
sequence of the two most recent numbers on the stack. It
would be something like,

beachday=

w

n?

an.
Be sure, when you make different versions of a little
program, to name them two different things,--unless you
quit the terminal (the command 'qu' will do this) and
restart it. The PC 'wants' one word for one program, not
one word for two programs, in each run.

So, with beachday, we could answer the questions the
other way around: first, is it raining, then, is it sunny:

0
1
beachday
nn
and it will say 'l'. And so on.

We have covered some ground so far--we have got working
with the Boolean AND and the Boolean NOT--the 'an' and the
'n?'. The third really important one is, as said, the
Boolean OR--what is simply 'or'. Don't think of it as any
complex at all, though the word 'Boolean' sounds perhaps a
bit fancy. The reason I use the word 'Boolean' at all is
chiefly to remind ourselves that our natural English
language is so much much richer, also in how we use these

48



G15 PMN PROGRAMMING FOR KIDS

little words. They may mean a whole lot of other things,
and, unlike a programming language, the meanings shifts
around with the circumstances--what we also call the
'context'. A programming language is very independent from
circumstances--from 'context'--and that is both the reason
it is great for concentrating and meditating and the
reason we must be careful not to get, shall we say,
'intoxicated' with it or infatuated with it too much. In
other words, don't take the song away from your everyday
natural language just because you have learned to program.
Rather, you know more: you are learning a supplement to
natural language,--not something that is meant to eat away
the finer dance of English.

So let's have a look at 'or', and then we have done our
first excursion into Boolean logic, and also learned a lot
more about how stacks work.

When both the bits are 'l', 'an' gives us a 'l'. In all
other cases it gives us '0'. So we might say, the 'an' is
a really demanding little chap. Right?

Then we have 'or', and it gives 'l' far more often. It
gives 'l' when any one of the bits are 'l'--including also
both of them. Only when both bits given to 'or' is '0',
then it gives '0°'.

So, to use another example of a pair of questions to
which we provide a 'l' or a '0' as answers, let's imagine
that the first question is this: do you like meeting
friends? Let the second question be: do you like meeting
new people? So you have a pair of numbers, of bits here.
And then we make a simplistic little program:

gotocafe=

or.
Let's test it. You like meeting friends? Eg, 'l'. You like
meeting new people? Eg, 'l'. Then:

1

1

gotocafe

nn
and the PC will respond with 'l'. So in this case, try
going to a cafe. But it will also suggest this when we

type

49



G15 PMN PROGRAMMING FOR KIDS

0

1

gotocafe

nn
or when we type

1

0

gotocafe

nn
The only time it won't produce a 'l', or a 'yes', is when
we give it two '0O's as input. So that's all there is to
the simple, but eminently useful, little commmand 'or’'.

Enough of machine logic for this time, and, as we begun

by saying: remember that natural language is much, much
richer when it comes to logic, and nevertheless it is
greatly valuable to know such more shall we say
'mechanical' logic, or machine-like logic. Knowing both
natural language reasoning, and Boolean logic, you know a
lot lot more than those who stick to just one of the
things.

Part A, chapter 5: YOU'RE INTO GRAPHICS PROGRAMMING!
Have you ever thought of what you are 'made of', inside

your mind? I mean, how would you summarize yourself--not
your body, merely, but your mind? You can dream, think,

50



G15 PMN PROGRAMMING FOR KIDS

etc, but what are your capabilities? You follow?

If you find it a bit complicated to answer such a
question, you can relax: since the time of Aristoteles,
who lived some hundred of years before the time of
Christ--and before him, I suppose, also--and in the
following thousands of years--nobody has ever totally
agreed on any way to describe the mind.

Yet, if we think of dreams, let us remember, or put
words on, some capabilities we have: to visualize, to
see images when none are present before our eyes. Perhaps
some do this more clearly than others but I'm sure that
everybody does it.

And we can also dream up music, new sounds, voices,
right?

And we can certainly think. And respond to rhythm of
music. And, whether we like it or not, we respond also by
various feelings and emotions, mild or strong, around in
the body or mostly felt in the mind--or a feeling may show
as a clear blush in the face. And all sorts of things like
that.

We can also think before we act--imagine that you are
about to open the door but you also have something in your
hand and it suddenly occurs to you that it might slip when
you shift the grip of it unless you are careful. So that's
a reasoning that may take place very swiftly, within the
second, and it is perhaps a reasoning where you don't have
to use words--you rather 'think with the body'. And in
dancing, you are 'thinking with the body'--especially when
you train and build up patterns.

So thinking, sometimes, is a kind of action that you
don't quite do yet, but you do it in the mind--and then
you may carry it out or not, after having a feeling over
how well it sits with you.

This is all enormously complicated and yet we are born
with it. When we want a robot to do a little bit of what a
human like you or me can do so naturally, we must put in a
lot of information and even then the robot is likely to be
awkward and do it clumsily or wrongly where a human being
with a living mind may do it really nicely and fluidly.
For we are not just machines, we have intuition as well--

51



G15 PMN PROGRAMMING FOR KIDS

something very lively, which enables us to really see and
really feel and really think, not just--as a robot would
do--go through lists of rules all the time. A robot can be
cleverly set up so that it seems to us that it may be
'learning' but it is not really: for there is nothing in
between the zeroes and the ones in it. And so we don't
train the robots,--we should rather use other words than
'train' or 'learn' about them--and a word is 'entrain'. It
sounds more technical and more like the type of thing a
machine can do. So the machine don't 'recognise' you or me
even though it may say our names in one way or another:
rather, it may have rules that produce a name, perhaps
through a 'match' on texts or camera input or whatever.

So we say 'match' not 'recognise' when it comes to robots.
If we are good about language when it comes to robots, we
can have much fun with them and also sometimes program
them. But we won't think us as stupid as them nor will we
think them as smart as us--ever. And that is important:
that we respect ourselves as full human beings and that we
--living people--have something about ourselves that no
machine, no thing we make in our factories and workshops--
can ever have. Perhaps it also has to do with the word
'infinite'. You know that word?

So, when something is 'infinite' it has no end. And so,
perhaps, one of the reasons it is so complicated to
describe our minds is that our minds are somehow not
finite,--that we are somehow 'infinite'. Can't you feel it
sometimes? Perhaps you're dancing or talking with people
and suddenly your mind feels all over the place--and it is
perhaps not an illusion. You feel as your nerves have no
ends to them. That sense of 'being everwhere' is a kind of
deep feeling and you can come more easily to it some times
--when you are in harmony with yourself, and happy with
who you are--than at other times. But it is awesomely
important that you don't think of yourself as a machine.
I'm not saying that machines can't act smarter than people
are acting--sometimes--but that's just because of some
lucky programming, not because the machines have anything
smart or intelligent about them at all.

They have just programs. And we can pretend to be like

52



G15 PMN PROGRAMMING FOR KIDS

programs, sometimes, but we are so much much more inside.
Let's bring that into our feeling of ourselves when we
work with programming. It must be in every programming
book, in every class on programming. So that's what we
call 'philosophy'--to think about the grand things. The
word 'philo' refers to a word that at the time of this
chap Aristoteles (ie, in ancient Greece) means 'love'. And
then 'sophy' means wisdom, or truth, or understanding.

Alright, enough big words, let's do some small numbers.
And by these small numbers we can make a program that
produces both more varied dots on the screen than that
which we have done earlier in the book, and some text as
well, and do so without an entirely clear-cut pattern--
as if by chance or coincidence. For this we have the two
letters 'af', which we may try and remember as 'A Free
number'. Let's begin by a little experiment in the
terminal, then we put a short program to the i:1 card--
short, yet longer than that which we have tried before--
and then we try it out. This will give you more command
over the display, and not just its dots or 'pixels' but
also how you can put texts all around it.

So, let's start up the terminal the way we usually do.

Have you done it? Then type, with lineshift after,

500

af

nn
And now, what comes on your screen is any number between 1
and the number you wrote on the line above af, namely 500.
Try to type in those three lines a couple of times. Each
time you get various numbers--23, 84, 123, whatever. (You
can try to put a higher number than 500 to it, but if you
go into the tens of thousands, there is another word you
can use, that works well with really big numbers, and that
word is rffqg).

Are these numbers entirely coincidental? No, absolutely
not! They are just a lot of funny calculation where one of
the inputs to the calculation comes from the little clock
inside the PC. This clock doesn't merely count seconds,
but it counts tiny bits of seconds. And so, each time you

53



G15 PMN PROGRAMMING FOR KIDS

start up the PC, there will be tiny little differences in
timing, and these produce enormously different numbers
when you use 'af' (or 'rffg'). So this is a 'free' number
only in some ways--in other ways, it is bound up to
calculations as all numbers a machine comes up with are.

In the last chapter, we saw how the PC really 'adores'
0's and 1's and how, by putting something of our thinking
into bits of 0's and 1's, we can produce programs. I have
in mind that we are going to compare some numbers in what
we are going to type in as a program to card i:1l soon. So
how do we compare numbers? I mean, how do we get the PC to
check whether a number is greater than, or less than,
another number? That may be handy when we get the PC to
produce numbers with 'af'.

So, to check whether numbers are bigger than, or smaller
than others, we have such as 'gt' and 'lt'. How about
trying out this:

5

3

gt

nn
The PC will say '1l', which we have learned to think of as
the answer 'yes'. So, the way to read it is this: 'we have
a five, we have a three, now is the first number greater
than the second?' And the answer is 'l', or, 'yes'. So, if
we switch the sequence of the numbers, we will get '0':

3

5

gt

nn
For this time, the question is, 'is 3 greater than 5?' And
since the answer is no, the PC produces '0'. But we can
put 'lt' instead of 'gt', and check whether '3 is less
than 5', and we will get a '1':

5

1t

nn
And we have some more of this sort. We can check whether
two numbers are equal by 'eq’:

54



G15 PMN PROGRAMMING FOR KIDS

8

8

eq

nn
And it will say 'l' to tell that they are equal. We can
also combine the 'eq' with 'lt' and then we get 'le'; we
can combine the 'eq' with 'gt' and then we get 'ge'. So,
for instance, is 9 'greater than or equal to' 8?

9

8

ge

nn
Here the PC says 'l'. Enough of this. Let's get into the
card i:1 and type in a little program.

In case your PC has been used for other things in that
card area, would you mind going back to the chapter where
we said 'useful thing to know', and wipe ten or twenty
cards clean? (That was in chapter 2, higher up in this
part, part A.)

So let's put the program to card i:l.

You remember how to do that? You press <CTR>-L and type
in

il
and press lineshift. And do a [RIGHTCLICK] on the mouse if
you have to to get it to Edit mode. Put blanks to it by
many uses of <TABL> on the left on the keyboard, the key
that perhaps has something like ==>| on it. Be sure to
keep things lowercase. Do you know that if you happen to
hit <SHIFT>-<TABL> you get uppercase all the time? Press
<SHIFT>-<TABL> to switch off this uppercase again. Good
thing to know in case you wonder why it may be suddenly
all uppercases after you've clicked here and there.

After pressing <TABL> press lineshift and press many
<TABL> again, and use <ARROWS> also, if need be, until
you're satisfied it has spaces all over itself.

Now the next program has four cards. That's all it takes
--merely one, two, three, four cards, to produce stars
that look more like stars, for they vary in intensity; to
show them so that the same pattern doesn't quite occur
twice; and add to that the word 'people' spread around

55



G15 PMN PROGRAMMING FOR KIDS

that region of stars, quite a few number of times--and
also in a new way each time we run the program.

Notice how many sentences in English it took to describe
that program. So we must put up with the fact that it has
several parts to it.

But I promise I will explain each part very clearly and
apart from one or two things, it builds directly on all
we've been through so far. All you have to do is to apply
it--and be willing to think a little bit about numbers,
not difficult numbers--just simple numbers. Okay? Let's go
--and I will explain one card at a time, as we type it in,
before we run the program.

Here's the first card, which you can put to card i:1. Be
sure to press <CTR>-R to get to the second column. I have
put in extra many blanks in this textbook so there is no
doubt in the world that the second column really is the
second column. So this is the first. It makes a new word
called 'freeplace'. It uses 'af', which makes a free
number, and 'ad', which adds something to it:

freeplace=

100 100
500 500
af af
ad ad.

So, amazingly, though the two columns are entirely the
same--apart from the 'freeplace=' on top of the left one,
they usually produce two different numbers. Now which
numbers are that? They are supposed to be roughly between
100 and 600, both of them. So you see '100' is written
first. Then '500', and the '500' goes to 'af', which makes
a free number, anywhere between 1 and 500, varying each
time we run it. Then 'ad' expects two numbers into itself
and adds them up. The '100' is then added to the free
number, so we get something like 101 up to 601 or there-
abouts. You see, what we want is it to be well within the
limits of the screen. Remember we talked about the screen
having 768 dots vertically and 1024 dots horisontally? So
we want to be very well within both of these numbers. In
that way, we can do anything we like--we can put dots
there, and even texts,--the word 'people'--which can go

56



G15 PMN PROGRAMMING FOR KIDS

quite a bit to the right without going outside of the
screen.

So that's why it is called 'freeplace'. The little word
produces two numbers which is a kind of free place on the
screen. Let's save the card when you have put it the way
you think is right. (Whether you have some blank lines on
top, in between, or after the lines don't matter at all;
it's the sequence in each column that matters.)

So, to save it, you press <CTR>-S and type in

i1
and press lineshift, right? When this is done, let's go to
card i:2 and put spaces to it all with <TABL> and line-
shift and such.

The next card is this, it's a short one, and it uses the
'af' also, and in addition the 'le'--'less than or equal
to'. It goes like this:

usually=

3000

af

2990

le.
So '3000' goes to 'af' and that makes a free number any-
where between 1 and 3000. Now usually that number is less
than 2990, right? It's just very occasionally it is in the
uppermost 10 places of 2991 to 3000. So we're going to use
this little program inside our programs to make stars and
put the word 'people' on the screen, so that while it
usually does make stars, it doesn't that often produce the
word 'people': otherwise there would be only the word
'people' all over the screen and we wouldn't get to see
the nice little bright green pixel-stars.

So 'usually' will produce 'l' to mean, 'yes, this free
number is less than or equal to 2990' most of the time;
but some of the time it will produce '0' to mean, 'no,
this is one of the unusual cases where the free number is
in fact greater than 2990 and smaller than 3000'. A handy
little program or function or what we call it that we will
use in the next card.

When you have typed in the i:2 card above, save it the
same way, by <CTR>-S and you type

57



G15 PMN PROGRAMMING FOR KIDS

i2
and press lineshift.

Ready for the next card? This is building up a program
that has many small programs in it. 'Usually' is one such
small program. We can call these small programs for under-
programs or under-functions--or, shorter, sub-programs, or
sub-functions. If you want a big word for these chappies,
you can call them 'subroutines'--under-routines, in a way.
(Since a 'program' can also be called a 'routine').

Ready for the next card, i:3? Here we put the previous
little programs--or 'subroutines' if you like--to use.
I've put in many blank lines here--I usually do that when
I use a word that is called 'se'--it's a new word, and
I'll explain it as soon as you've had a look on the little
program named 'saypeople'. So this is i:3:

saypeople= &people&
usually freeplace
se

ex bx.

Now this card, as all cards with two columns, is something
you read 'first left column, then right column'. That's
the way to read them. This program is the part of the top
program that we get to in next card. So we're soon
finished! We're over half-done with it!

So, the program 'saypeople' has on its left column the
word 'usually'. Most of the time--as we said about the
word 'usually'--it will produce 'l'. And most of the time
we want this program to exit, so that it doesn't clutter
up all the screen with the word 'people'. And 'ex' does
actually exit the program. Therefore, 'se'--which you can
perhaps remember as 'see' (but remember computers don't
really see anything, they just match numbers)--this is a
funny type of command, because it says: the next command,
after it, will be done only when 'se' gets a 'l' into
itself. In case it gets a '0' into itself--and 'usually'
does sometimes, but not often, produce a '0'--it will skip

58



G15 PMN PROGRAMMING FOR KIDS

doing that which is the next command. And the next command
is 'ex'--that is, exit this bit, this part. It doesn't
mean exit the terminal or anything like that. It just
means exit this little word in this particular run of it;
and when we call this word many times, sometimes it won't
do that exit.

So you see that 'se' is quite a grand type of command.
That's why I typically put blank lines both before and
after it--I really want it to stand out, because it is so
influential. Be sure that the next thingy after 'se',
whether it is on the same card or (if there are many
blank lines) on the next card, is a command--two or more
letters (not a number nor a &..& type of thing or anything
such as another 'se'--the 'se' has been made so that we
must keep it simple, and that has turned out to be great
when we make big programs!).

Next column--which is then only rarely done--yet
sometimes, if we call 'saypeople' very often--has in it
the word &people&. The &..& we have used before, in the
first chapters, when we got the PC to say your name,
right? And here we want the PC to just say 'people'.

Where do we want it to say that text? Answer: any free
place, so we say 'freeplace'--the word we first made just
now, on card i:1l. So the cards that are one after another
are always so that they can use that which is earlier on,
quite freely.

That last command is 'bx'. Remember 'b9', which we used
to put your name very neatly in nice B9font on the screen?
We promised we would come around to show a way to put
texts, also long texts, anywhere on the screen. So 'bx' is
this variation. It does the same as 'b9' but you must tell
which dot horisontally and which dot vertically it is
going to begin on. And 'freeplace' takes care of this--by
giving it two numbers between 100 and 600, about.

Save the card, when done, to i:3, by the usual <CTR>-S
and you type in i3 and press lineshift.

If T have jumped into too much here by coming with a

program that is suddenly four cards long, then bear over
with me: we'll get the program to perform whether we

59



G15 PMN PROGRAMMING FOR KIDS

fully understand it or not the first times; then, as you
work on with the book, you can come back to this program
and it will suddenly be much more understandable. The
first times, I know, it can be a bit overwhelming. Then,
just trust that you're learning--and sometimes much more
than what you might think. And what you pick up during
day-time you work more on when you sleep, and so you are
more ready to quickly understand it the next day.

The next card is very much like how we have been doing
things before, when we got the PC to put a column of dots
on the screen--only here we use 'p3' instead of 'px', so
we can vary the intensity of brightness of the dot freely.
This 'p3' chap expects three numbers--the horisontal dot,
the vertical dot (ie, positions), and then any number
between 0 and 255, where 0 is coal black and 255 is as
bright as the computer screen can make its green.

Get ready to try it! Just type in the program
'starspeople' here, which calls on all the previous three
cards, and does so without much complications:

starspeople= 255

11:10000 af
p3

saypeople

freeplace lo.

So, where you have the blank lines don't matter as long as
you feel it is clear enough. The left column, then, says:
our program 'starspeople' has a repetition 10,000 times--
that's a lot of sweet stars. The 'll' (two lowercase L's)
is matched with a 'lo' at the bottom right column (lower-
case LO). So that's our loop to make stars and also some-
times, but only sometimes, show the word 'people'. And we
simply write 'saypeople' to get the text in there. Don't
have to think through that one again.

Then, we use 'freeplace', to get a place for the star;
and on top of right column we have '255' and then 'af',
which means that we get any number between 1 and 255 for
intensity of the green. These three numbers go into 'p3'

60



G15 PMN PROGRAMMING FOR KIDS

which, as said, produces a dot just there, and of that
intensity. And that's it!

So save the card, when done, to i:4 by the <CTR-S> and
that you type in i4 and press lineshift. Then get into the
terminal--you know how, I think, or check with chapter 1
if your memory need refreshment--and there we type

~il

cc
If there are no 'complaints' by the PC, then the program
was correctly typed in. And to get the effects, you can
type

starspeople
and get a field of 500x500 on the computer monitor full of
star-like dots of varying intensity, and a bunch of times,
all over that place and sometimes a little to the right of
it with some letters, the word 'people'.

I say, you're into graphics programming!

Part A, chapter 6: YOUR MOUSE PRODUCES STARS

Once upon a time--so begin fairy tales, but also,
sometimes, can a tale of history begin--it was thought, by
a German thinker, that if only there was a perfect
language of logic, then that would end all conflicts in

61



G15 PMN PROGRAMMING FOR KIDS

the world. For if people had any conflicts anywhere, they
could just sit down around a table and say, "Let's
calculate!" And so, by using this perfect language of
logic, they would work out what's fair and each would
stick to it and there would be no conflicts of any sort.

Well, do we laugh of this idea? Let us laugh a little,
at least. Conflicts cannot always be solved via
calculation--although, perhaps, the thinker, the
philosopher (his name was Gottfried Leibniz), had a
certain point: when we think clearer, we can sometimes
find ways to avoid trouble, and in thinking, it does help
if we can compose our thoughts really nicely. And for that
we do need language, and perhaps also sometimes a formal
language--a language like a programming language--can be
of some help. It can help produce clarity. At least for
those who spend time with it.

Yet, the world is infinitely more complex than that
which any human being in it can think out. Right? The
world, especially the world of people, is just so
enormously complex--and sometimes you must move really
fast and with fantastic precision, as of a dancer, to
capture a moment and swing it if something is about to
take a turn that it shouldn't take. Then you must rely on
judgements inside yourself that goes deeper than mere
thinking. That's when we talk of intuition.

Somehow, and this is a theme I have also noticed with
other people--those who know a bit of how to program
computers are often more willing than most not only to
sort out their own thoughts but also listen to deeper
feelings and to intuitions. Clarity in one place helps
clarity in another place. So, in the upcoming volumes--and
I hope, like me, you are considering the Art of Thinking a
journey, a journey where we can make discoveries--in the
upcoming volumes we'll not only tackle programming that
builds on what's in this volume, but also see if we can
sort out a bit about how to tune our own intuition in all
areas of life. For thinking is also about that--not just
about computers, of course.

Shall we then do something as down to earth as to work a

62



G15 PMN PROGRAMMING FOR KIDS

little with our cards and prepare for a next program? Up
until now, when we have worked with cards, we have, if you
have followed my suggestions exactly, used <CTR>-L to load
cards. We'll now set it up so we can move between cards a
little faster.

Then, we have started out making new programs each time.
How about going in and 'hacking' into the program we made
in the last chapter? This you can do really fast if the
program is still on your PC, if you are using the same PC
and it hasn't had its G15 PMN cards re-installed or any
such thing.

And one of the things we might want to do is to figure
out a way we can combine mouse with something of what we
did last time. So you can use your mouse to produce stars.

But first, it's time to put your mark on the program.
Every program with respect for itself begins with some
comments, which tells something of the name and usually
also who has made it and perhaps also when.

A comment, then, is the absolutely most humane part of a
program. It begins with a bar or what we call it, the |
type of sign, which is found on the keyboard perhaps to
the left of Z when you also click <SHIFT> (the uppercase
kind of <SHIFT>), or perhaps just to the lower left of
the <ENTER> key (ie, the lineshift button), also requiring
a <SHIFT>, usually.

So let's do some work--I assume the cards you put into
the PC at i:1l, i:2, i:3 and i:4 in the previous chapter
are still there. If not, put them in.

And the first bit of work is to push all these cards one
step to the right, so they become i:2 to i:5 and that we
get i:1 free for the use of commentaries. Some of you may
already know how to do this--it involves <CTR>-C. And, as
promised, we'll soon enough set up something--a card--to
point to the i:1 card so we don't have to do <CTR>-L each
time we want to get to that card.

But for now, if you are ready, do a <CTR>-L and type in

i1
and then let's move these cards exactly one step to the
right, or forward, of what we call it. This is how:

63



G15 PMN PROGRAMMING FOR KIDS

===>USEFUL THING TO KNOW: MOVE CARDS TO THE RIGHT/FORWARD
So this is a fast way to make room for one or more cards.
This is most relaxing to do when there are no cards above
the cards you're working on, that need to be in the same
place. (If there are, you must watch out for how big
number you type in next, and be sure it isn't too big.)

So, number one, get to the card which is the first in a
series, where you want this series to be moved forward.
For this, you might use <CTR>-L for instance.

Do a [RIGHTCLICK] so the CAR editor is in Edit mode.

Then, press <CTR>-C and type in

33
or any number a little bigger than the amount of cards you
are working with. (I usually type a number like 33, 333,
555 or 9999 or so, anything easy to type in and that's
covering the amount of cards that are going to be moved.)

Be sure this number isn't so big it touches something
that lies above the area you are working with, and that
should be in place.

Next: if just want to insert room for one new card,
press <PGDN>. To make room for more cards, navigate to the
card above it e.g. by <CTR>-L.

Then press <CTR>-T. It will ask you whether you really
want to copy To this place. When you are sure, press
<SPACE> (ie, the long space bar underneath all the letters
on the keyboard). If you are uncertain--such as if it
mentions an amount that surprises you--press <ESC> instead
and try again.

You can now go back, for instance with <PGUP>, to the
card you started with. It will have a copy of itself with
a higher cardnumber, so you can just wipe it clean with
<TABL> and begin to use it.

***The same as we did just now, you can do in the
reverse, e.g. by selecting PGUP instead of PGDN after you
have done the <CTR>-C and before you do <CTR>-T. In that
way, you have a method to remove cards also.

All right. The explanation was a little bit longer than it
has to be, just so that has a form that you can look up

64



G15 PMN PROGRAMMING FOR KIDS

later if you need to have memory refreshed about this, and
use it to handle some other card-moving situations.

Have you done it? Great. Now let's put in some comments.
Just remember to begin each line in each column that has
some comments in them with a | and, so that we create
clear good code and don't 'confuse' the PC, avoid using a
dot (.) or ending a line with a &-sign (for . and & are
used to signal things to the PC--the dot or . is used to
signal that a particular program is finished; the & or
'ampersand' is used, as you know, when we wish to quote
something so as to display it on the monitor or the like).

Here's what the comment card, i:1l, could look like. Get
to the i:1 card and be sure it is in Edit mode and type
in your name where it says YOURNAME so you get it in:

| studying |A program
| the mouse | by
| YOURNAME

In case your name goes over more lines, be sure to put a |
before the next line in the column. Remember that <CTR>-R
brings you to the right column.

When satisifed, save the new i:1 card by <CTR>-S as
usual. Then, as you press <PGDN>, you should see that the
program starts nicely on i:2 and continues.

We should check that the comments have been put in right,
in the sense that the PC doesn't 'protest'. But can you
wait a moment before you check it? Then we can set up a
quick way to get to i:1 and to get to the startup of the
terminal, which normally starts at card f1 (at least when
you mount the app as I indicated in chapter 1 in this
part, part A).

So here's a way that is highly practical:

Press <HOME> then <PGUP>. That gets you to card g:14.
Why can't we set this up with a couple of things we can
just click at when we need to? (Another card, equally
easy to get at, is g:16, by <HOME> then <PGDN>.)

So either it is plenty of space already on your g:14
card, or you can make it that way: do a [RIGHTCLICK] then
use <ARROWS> and <TABL> and <ENTER> to put in blanks on

65



G15 PMN PROGRAMMING FOR KIDS

the card where you want it. Then, of course, type in the
first card of the program--and more, if you like to.
Perhaps with an explanation, like this:

Programming now: i:1 i:5
And let's add another line also:

To start the terminal: f/1
and here you don't put in a slash / but rather the type of
flower or slash-like sign that on a G15 PMN you usually
find by a <SHIFT>-5 press (ie, the <SHIFT> button for
uppercase, combined with the digit 5). (I should say that
this sign rather looked like 0/0 before we redrew it this
way, and is the only strong change of the G15 PMN keyboard
compared to how it has typically been done on other key-
boards; the name of that was 'percent', but we don't need
to have such a sign for that word, which easily can be
overused in any case--'permille' is a more important word,
I would suggest--both of these can be shortened easily.
But, then, as G15 PMN programmer, you can put any shape of
any sign you like--there are apps for character drawings.)

So why don't you save the g:14 card now? Press <CTR>-S
and type in

gl4
and then you can try out how it works. We call this, "to
set up links". There's a link to the program we're working
on, and a link that starts the terminal.

If you like, have a look at the normal place you start
the terminal--I suppose that's h:1l--and see that you have
written the £/1 thingy in exactly the same way as there.
Then press <HOME> and then <PGUP> and you're back to your
link card.

Now do a <CTR>-W to enable the mouse, and try them. We
can try the i:1 link first. Click on the colon : there.

It should jump right to i:1 card. Then click on <HOME> and
then <PGUP> and you can try to start the terminal from
there, by a click between the 'f' and the 'l' there. Did
it work? If not, just go back and have a look at how the
h:1 card does it, or wherever you start the terminal from,
and make sure it is equal, and a blank before and after.

Does it work now? Excellent! Then, inside the terminal,
let's check that our program still works, with the new

66



G15 PMN PROGRAMMING FOR KIDS

comments, and with all cards moved one step up. Type

il

cc

starspeople
and the program should start--and perform just as it did
in the last chapter (in the next part, we'll see how a
program can be set up to start more and more directly,
with less typing needed at the terminal).

When all this works, type

qu
and we are ready to change the program so that we can
try out the mouse--just very simply--not bothering about
whether it is clicked or not, but so that we get a tiny
'starfield' just where we move the mouse when the program
is running. We also need a way to keep the program to run
for a while, then, and a way to get it to exit when we
click on the lineshift button or something.

So we're going to put in a little bit stuff, and learn
some new commands. We'll learn that 'su' is substract,
just as 'ad' is add; we'll learn that when we want to
find out whether keyboard is touched when something else
goes on, we can use 'ck'--Check Keyboard; we'll learn that
'cm' is one way to Call on Mouse; and we'll see that it is
possible to get a loop to go on for as long as we please,
until we press lineshift, simply by putting in the
mysterious little command 'ql' at the right place. We'll
also learn that 'sh' is a command to take away unnecessary
numbers on the stack (and one of the commands, 'cm', puts
some more numbers on the stack than we need, so 'sh' will
come very handy to 'shuck' away anything unnecessary.

With a little patience, then, we'll rework the program
from the previous chapter to do something a bit unusual
with the mouse. We'll even learn a new, longer command, or
function, or what we call these things--called
'activepause'. This we are going to use because one PC may
be frightfully fast and another may be slow and when we
make a program drawing things on the screen by the mouse,
this is a way to make the PC do roughly the same kind of
thing no matter how fast the PC works in the background.

These are many new things but it is not that much

67



G15 PMN PROGRAMMING FOR KIDS

typing, and, as pay-off, the program can be played with
more than any program we've made before in this book.

So roll up your sleeves, stretch your fingers, and let's
start to change the cards!

And let me say it clearly what I have indicated in the
beginning: programming G15 PMN is fun to learn not only
because you get results quickly, by typing in just a
little, but also because it's easy to change a program a
and see what happens then. Just be ready, when you change
things you aren't certain about, to restart the PC! And,
as a good rule of thumb, restart it often anyway, when you
do hefty programming--and hefty programming is exactly
what you are doing.

This is the new i:2 card. It has 'sh' in it and that
'shucks' away--deletes, removes numbers we don't need. And
the word 'cm' tells us a lot about the mouse--not only the
position, but a 1 or 0 as to whether the left button is
clicked, and a 1 or 0 as to whether the right button is
clicked. So there are two 'sh's after the 'cm':

freeplace= \
cm

sh 40
sh af
40 su
af

ad w.

Now that you are such a pro you will get this right
without me having to spell out that you use <ARROWS> and
<CTR>-S and so on. So each card that should be changed I
will simply mention here, and if you want to try this
little gem of a mouse program, be sure to get the program
cards stored right.

You see that the number before 'af' is much smaller--so
there will be stars just around where we move the mouse.
And as the mouse moves around, the word 'cm' tells us
where,--it leaves the horisontal position and then the
vertical position on the stack. If you look this up in
some overview, it will say 'x' and 'y'. This is the usual
quick way to talk about position horisontally and position

68



G15 PMN PROGRAMMING FOR KIDS

vertically. A way to remember it is that when you look at
the letter 'X' and the letter 'Y', then 'Y' has something
more vertical about it! And a way to remember what
sequence they come in is that, of the two, x is first in
the alphabet, then y comes along. (Incidentally, have you
noticed that 'z' in the cards has its line falling like
backslash \ rather than as slash /? This is because we
want to use 'z' in programming to indicate that something
is finished. So 'z' in robotfont is kind of the mirror
image of 'z' in b9font.)

Our friend, the single-letter command 'w', we have seen
before--remember when we were doing the '0' and 'l' type
of thinking--about rain, sun, rainbow, beach, cafe and so
on? Then we used 'w' to 'switch around' something. Here we
are doing it so that we get to add something to the mouse
position. The mouse position is given as the two numbers,
x and y. So there is a w and that means that the sequence
becomes y and x. So we can add something, then, to that
which is now top of stack--x is top of stack. Having done
that, we do another w and that switches it back again.

So, by a little bit of thinking--draw up the stack of
X and y and how this routine makes a free number by 'af',
adds it, uses 'w' to switch, makes another free number,
adds it, uses 'w' to switch back. Now why does it matter
why it switched back, so we have x and y instead of y and
x? This you can, if you wish, try afterwards--when you
get the program to run well. Just drop the last 'w', put
blanks on that line, and suddenly everything you try to
draw gets some other place on the screen than where the
mouse it.

The i:3 card has 'usually' on it, we don't need to change
that. This is the new i:4 card--exactly as before, only
that we must have a shorter word to give the mouse freedom
to move also towards the edges. Let's make it say 'hi’
instead of 'people':

saypeople= &his

usually freeplace

69



G15 PMN PROGRAMMING FOR KIDS

se

ex bx.
The i:5 card has just a tiny change--it's a much smaller
loop, it says 11:50 now, because we want the mouse to
sprinkle stars just very near around itself, and so it
shouldn't be so many. So here's the new i:5:

starspeople= 255

11:50 af
p3

saypeople

freeplace lo.

We could call it 'starshi' and saypeople for 'sayhi' or
the like, but we do it the easy way. The point isn't
what we call the function, but what it does--as long as
we have a clear idea about it all, any good-sounding name
will do.

Then, we add a new card, i:6. Here we go:

mousefun= ck
11:1 se
ql

60 ex
activepause

starspeople lo.

Okay, this is really quick to explain if you look at it,
even though it has several new things. First, the loop is
amazingly just 11:1, not 11:2 or 11:3 or 11:10000. How can
that work out? Just one? But then, at the next line, is
the mysterious 'ql'. It does a trick--we might say--but it
is also perfectly in order. It changes the counter by
substracting one from it. So the counter will be 0, after
gl has done its work. This means that the loop will next
increase the value to 1, and again gl makes it 0, so it
goes back and forth between 0 and 1. It doesn't exit

70



G15 PMN PROGRAMMING FOR KIDS

unless it has something like 'ex' in it--and, yes, it does
have an 'ex' in it. Remember this little command? It quits
a little program--not quitting the terminal--just the
little program that is running. And see that 'se' before
it? That 'se'--which reminds us of 'See', to look
(although the PC doesn't really 'look' as you know)--it
does the next line when, and only when, it gets a 'l' to
itself. And so, before the 'se' is a 'ck'--Check Keyboard
-—-so you can press such as a lineshift and the program
will exit!

The one new thing to explain, then, is 'activepause',
with the number 60 before it. Why 60? Just try different,
higher numbers, if you like--500 is half a second, 50 is
a tenth of half a second--1000 is one second. 60 seems to
be okay if you want to create a burst of stars where you
move the mouse on a pretty broad area ('cm' is one way to
read the mouse--it works on the Curveart area, if you have
tried the ART command; you can try 'md' for a somewhat
larger area if you like, instead of 'cm'). The higher the
number the more it will pause before it bothers to look
at where the mouse is and make stars there. So there will
be fewer stars the higher the number is, as given to this
'activepause' (if you want to look up more about this
word, most of the longer-than-two-letters word in the
TF terminal are at least mentioned somewhere in the text
that comes along with the 3rd Foundation app 3,333,333).

Now, before we start it, notice that the new card calls
many many times on the previous program we made--only that
we have changed the previous program so it responds to
your mouse. And notice how easy it is--just to mention the
name of the previous program, and, as long as the program
is there--in the cards before it--it all works out. As
we'll see.

Ready to test it? Into terminal, then

~il

cc

mousefun
And when the cards are exactly as above (hopefully I have
typed correctly here and everywhere when it is the program
cards themselves, but be forgiving if I haven't!)--you

71



G15 PMN PROGRAMMING FOR KIDS

will find this amazing thing: until you press <ENTER>, the
program will make a 'burst' of stars--bright dots of
varying intensity, different each time--just where the
mouse is--and sometimes it will write 'hi' there!

Go on and change the program--one thing at a time--and
change it back, then change another. Restart the G15 PMN
each time through a 'reb' command, just in case you do
something really wild that has effects that must be
'cleansed' by the 'reb' action. Poke into the program and
see how things belong together. You might find ways of
making it even more fascinating by this or that tiny or
not-so-tiny change.

In the next part, part B, we'll have some chapters where
we will slowly build on what we have worked with in this
part, so that we get familiar with even more commands and
and more capabilities in making varied programs.

72



G15 PMN PROGRAMMING FOR KIDS

PART B: BECOMING FRIENDS WITH MANY NUMBERS

73



G15 PMN PROGRAMMING FOR KIDS

Part B, chapter 1: THE ART OF ARITHMETIC

Perhaps now you feel that you have a sense of what it is
to go in and out of the terminal for G15 PMN; how it is to
put a program to cards and run it and then change it; and
how G15 PMN 'likes' to put numbers in a stack--and then
'pops' them off again. You may or may not be one who likes

74



G15 PMN PROGRAMMING FOR KIDS

to think about numbers, but G15 PMN is gentle if you don't
like it too much--and will gently increase your ease with
which you handle numbers, as you work with more and more
programs. It isn't too much to say that G15 PMN could be
just about all you need to learn to handle numbers at any
level you like--and in that way, it is an education that
may have a core value for all. For instance, we can learn
to think about curves--the socalled 'sine' and 'cosine'
curves, for instance--and other things like that, just as
we have already handled a bit of what we called 'Boolean
Logic', reasoning by means of 1's and 0's and such.

To set aside some time--perhaps quite often for some--
to work with growing programming competence, and using it,
and also make and change programs, is a work with that
part of your mind that thinks about large and fine orders,
-—-great structures, and details as well. There is a calm-
ness in doing that. You build a sense of beauty inside.
The more beautiful program it is, in your eyes, to more
easily you will also spot anything in it that has to be
changed to make the program do what you want it to do.
Beauty makes it easy to, as it were, 'heal' the program.

And this beauty you build inside, you can bring out to
the individuals you meet as a smile within your body, a
sense of something--order, gratitude, that things are
good--which other people sometimes, but not always, bring
to you spontaneously. So it isn't too much to say that, in
order for you to have a more steady experience of harmony,
and to be more robust--if that's the word I want--in your
generosity and radiance--it helps greatly to have a bit of
discipline in a study of something like G15 PMN. Add to
this more artistic disciplines like drawing and dance, and
you'll find that all your body can radiate more of its
best capacities.

So let's look a bit into numbers, and how easy it gets
when we type our commands into the terminal. Start up the
PC and get into the terminal, as explained in chapter 1 of
Part A, and let's explore a few things.
Try to type
f

75



G15 PMN PROGRAMMING FOR KIDS

nn
and see what happens. Out comes '123456', doesn't it? This
is how the Third Foundation terminal tells you that the
stack is in its starting-point. So if you run a program,
and your program puts things on the stack and takes the
same number of things away from the stack before it exits,
you can type

f

nn
to get some kind of test that your program behaved as
your thought. If your program took more off the stack than
it put to it, or left some extra on it, normally there
would be another number here. (What does 'f' do? It makes,
or, if you like, 'forges', a copy of what's on top of the
stack. So you can do 'f' and 'nn' many times over and it
will not change the stack; but 'nn' alone takes one number
off the stack.)

In part A we saw that 'ad' does addition of numbers, and
'su' substracts numbers. When you use 'su', it matters
which way you put numbers to it. The rule of thumb is that
su is 'the first number minus the second number'. For
instance,

8

5

su

nn
gives '3', but

5

8

su

nn
gives '!3', which is a way in which G15 PMN can tell you
that a number is negative. Another way, which is, for
instance, used in the G1l5 PMN Spreadsheet app, is a dash,
a '-' type of sign. But when you program, it is of great
value that something as enormously different as a positive
and a negative number is shown by something that stands
out--even when you do many things and perhaps are a little
bit exhausted. So often you'll find that G15 PMN invites

76



G15 PMN PROGRAMMING FOR KIDS

you to type in any signed number with an exclamation mark,
a '!' sign. For instance,

!5

8

ad

nn
gives 3. Turning to 'mm', which is 'one number times
another number', it is as 'ad' in that the sequence
doesn't matter:

3

5

mm

nn
gives '15' as does

5

3

mm

nn
But when we divide one number on the other, again (as with
'su'), the sequence matters. The command 'di' works this
way, as a rule of thumb: 'the first number divided on the
second number'. So, for instance,

15

5

di

nn
gives 3, but if we switch the sequence of 15 and 5 we get
just 0. For 'di' handles whole numbers. We can go a long
long way with programming without bothering about decimal
dots; but when we need it, we can put it in, in one way
or another. For not too-long numbers, one of the places
we find functions to show, add, divide etc such numbers is
in the G15 PMN "Spreadsheet" app. For long numbers, these
functions can use, instead of our normal numbers, a type
of extra long number called "60-bit number", which is also
in the G15 PMN Open Robotics app. These longer numbers are
built up by our normal numbers: and by looking into these
functions, and thinking a bit, you can double the length,
and get up to 120-bit numbers. (But you already have 15 or
16 digits with 60-bit numbers, so I doubt you'll often

77



G15 PMN PROGRAMMING FOR KIDS

need anything more.)

I mention this to show that G15 PMN, while it starts
with whole numbers up to two billion, it doesn't mean that
it can't handle decimal numbers and even bigger numbers.

Yet how important are the decimal dotted numbers anyway?
Let's give it a think. Very often, numbers with a "decimal
dot" in them are simply a way of writing whole numbers. In
some cases, such as when it comes to converting money, the
'small digits' matter and decimal dots become really handy
--and that's the sort of thing the Spreadsheet app is made
for, so it makes sense that this has decimal dots in it.

Take two numbers, say, 55 and 34, for instance. If we
put it to the PC as they stand, the PC will say that when
one is divided on the other, it is 1. Now let's work on
this, and get more insight into it. First, let's try it in
the terminal:

55

34

di

nn
And here we get 1. One of the rules of arithmetic with
addition, substraction, multiplication and division is, as
I believe you already know, that when the numbers divide '
neatly--like 15 and 3--then you can multiply the result,
in that case 5, with the second number, 3, to get back the
first, in this case 15. Right? So since 15 divided at 3 is
5, then 5 multiplied by 3 is 15. That's when the numbers
divide neatly. When they don't, there is a way to talk
about how much 'off' the result is, and that's given a
long name--'remainder'--or a difficult name, 'modulus'--
and why it has these names I don't know. It could be
called 'apple' or 'orange'. In G1l5 PMN we just call it
'mo'. So let's try. The 'mo' of 15 and 3 ought to be 0,
since they fit so neatly, but the 'mo' of 55 and 34 ought
to be quite something other than zero. So 'mo' will tell
us how much 'off' the result is, if you multiply it back.
So it ought to be something like 21, because that's how
much 'off' the answer is, if we 'calculate it back'. (Do
you think this is a boring number lesson? Cheer up! We're
soon done, and even if you don't normally have much use

78



G15 PMN PROGRAMMING FOR KIDS

for any such arithmetic, then suddenly--perhaps you are
figuring out a clever way to calculate scores or something
for a game program--then it may be good to know that
there's a chapter explaining these little things.)
So, when we do
55
34
mo
nn
the PC tells us '21'. Just one more thing about 'mo', and
that's a thing that sometimes interesting when you want to
play with very free numbers. And that is this: type any
number--up to a billion--and then any smaller number,
above 0 and 1, and then 'mo', and what you get is, for
sure, a number that's between 0 and that number you gave.
It will never be as big as the number you gave (and never
bigger). And so you have a way to, as it were, 'shape',
free numbers really fast. Try, for instance,
123999555
17
mo
and the PC will respond with something or other between 0
and 16. I have no idea beyond that what the answer is.
So I'll go into the terminal and check and type it in
here. The terminal said: '8'. All right. Now you try any
other number up to about 999,999,999 and then '17' and
then 'mo', and you'll see that the number is 'converted'
into something with such a pleasant range.
So now you have a way of remembering 'mo': 'mo' is
short for 'MOdest'!
Now, then, let's look into what 55 divided at 34 is, in
case we want to see more of the result. Try,
55000
34
di
nn
and we get '1617'. So, if we did it with decimal numbers,
we could have said this: 55.000 divided on 34 is 1.617. So
you see that whole numbers 'carry' a lot of information,--
and so in a certain sense, a decimal number is no more

79



G15 PMN PROGRAMMING FOR KIDS

than a way to write whole numbers.

So the rule is, multiply by 1,000 or 10,000 or 100,000
or so--as for the first number--when you wish to get a
more exact result than whole number division can give. The
result you will then read as having as many decimals as
the number of 0's in the 1,000 or whatever you multiplied
the first number up with.

A comment for specially interested:

How far can we go with this idea of only using whole
numbers? Very far--just remember one thing: when you try
and divide a number on a decimal number, it's a funny and
different thing altogether--just try it out in the
Spreadsheet (app# 3555558) if you have the time. If you
divide, say, 5, on 0.25, it becomes a larger number: and
so inside the Spreadsheet there is a function that
figures out the right way to divide on decimal numbers.
To calculate such division means getting into big numbers
-—and bigger the more decimal digits there are--and so,
that's where 60-bit numbers become interesting, to do
serious division work with decimal numbers.

Another 'famous' use of decimal number is when we speak of
a circle, and we know something of its 'radius' (that's
half of how long circle it is if you cut it straight
over). So if it has radius 10,000 meters or something, how
long pathway around the circle? Type

tp

nn
and it says '62832'. You can think of 'tp' as 'To walk a
Path around the circle' or as 'two pi' ('pi' being the
Greek letter used for that in ancient philosophy). Why do
we have to write 1.0000 and 6.2832 when it is just as
clear to write 10 thousand and 628327

Half of tp is called 'pi', which you can get if you type

pi

nn
and then it says '31416'. So these numbers aren't meant to
be altogether exact--there's a lot of thinking into this
by philosophers in ancient times. It was found that no

80



G15 PMN PROGRAMMING FOR KIDS

matter how many additional digits one adds, it is still
not absolutely exact, but always rather a circa thing.

So with this way of thinking about circles, we can get
to such as the 'sine' and the 'cosine' curves, that--
really nicely--have the same type of curves that we see
that a circle has, but more like waves. And to calculate
around with this means also getting into such as
multiplying a number with itself (also called 'squaring')
and extracting the number that has been multiplied with
itself (also called 'finding the square root'). For this
sort of thing, G15 PMN has inbuilt functions. And there
are apps that can make use of the longer numbers, the 60-
bit numbers, if we need more decimals after the 'dot’'.

So when you work with the four plus one ways of doing
arithmetic -- addition, substraction, multiplication,
division, and what we called 'mo' (or remainder)--then
you are looking into, in a way, something that can be
called--to use a grand type of word--'order'. You are
studying something that is, in a way, both the most
complex and the most simple there is. And by using these
four plus one ways of arithmetic on numbers, especially
numbers of just one, two or three digits, or so, you can
get to become so familiar with some numbers they just
about can be called 'friends'. And this friendship, if
that's the right word, with numbers, can help you along in
-—and I'm not over-stating it--absolutely every field of
life, from dancing and art to swimming.

This "art of arithmetic" goes along with a sense of the
power of your own, natural, human mind. The machine is
there to help us: but we have shaped it to make it more
easy for us to go through our thinking, also about numbers
-—-and, occasionally,--also when we think about the
infinite, and how the infinite and these numbers somehow
belong together, in exciting and also mysterious ways.

81



G15 PMN PROGRAMMING FOR KIDS

Part B, chapter 2: DISCOVERING OUR GOLDEN RATIOS

Imagine a world composed only of circles, squares,
triangles, and perfect rectangles and such. How would it
be to live in it? I suppose it would be a little bit like
being extremely tiny and living in a bowl of salt. Rather
boring, except possibly for the first minutes.

Then imagine living in a world which has nothing of
circles, squares, triangles or rectangles. Rather like a
living in a soup, a soup in which there is nothing that
stands out except in some kind of vague, foggy way--no
clear lines, nothing geometrical. Again, I would think
that we agree that it would certainly be rather boring.

In between these two rather puzzling worlds--we can
call them 'extremes', for they are extremely just one
thing or another--we have the world in which we live in,
in which there are lots and lots of forms that are not
quite the perfect circles or squares nor just completely
soup-like or blurry but they are, excitingly, standing out

82



G15 PMN PROGRAMMING FOR KIDS

as both having something to do with geometry and with what
we can call 'floating out'.

Think of somebody who has trained her shoulders rather
much, perhaps in dance, or martial arts, or just exercise
of some kind. And so her shoulders become a little more
rectangular. Right? A little more of the right angles,
when seen at a distance. And yet there is not just more of
that, but also more of a curve--the muscles are, as we say
--at least a little 'bulging'.

So that can be very attractive. But somebody who is but
rectangular or but bulging--or who has nothing of the
rectangular at all nor of anything bulging anywhere--you
follow? The extremes, again, may not be so attractive. So
you are combining things, taking something from geometry
and the 'perfect forms', and something from a more fluid
world, and living beings sort of exist in between all that
--as does the world of clouds, the Sun, the stars, the
oceans, and so on--if you think about it that way.

In order to learn more about how we understand beauty
and the attractive, it would be interesting to find if
there are some rather 'perfect forms', like a rectangle,
that nevertheless is just so shaped that it connects to
the organic, rich life more than most such forms. And
some of you may already have heard of what it takes to
make such a form,--at least the phrase. And the phrase is:
The Golden Ratio.

Have you heard about it? What do you know about it? If,
like me, you know something about it, I think you will
also agree that there is a sense of there being always
more to find out about The Golden Ratio. It keeps on being
exciting to me--when I paint, or meet people, whatever I
do, The Golden Ratio keeps coming up as an idea, or as a
question, or as a possibility, and it is always, I find,
something creative about this. So let's explore this--just
very simply--and connect it to one of the simplest
possible programs we can make in G15 PMN. (Then we'll
take it up more later on as we explore art of thinking.)

We'll call our little program for 'fibo', and that's
because one of these ancient thinkers again left his mark
on some good work about this (called "Fibonacci" but his

83



G15 PMN PROGRAMMING FOR KIDS
name was really something like "Leonardo Bonacci").

So I'll give a first glimpse into all this, and I can
guarantee you that if you look into it once in a while,
you'll find some way or other to make good use of it. It's
a little bit involved to explain, so try and be patient
with me in this chapter, and perhaps go back and read
parts of it later. The Golden Ratio is best explained in a
bit jumpy way, so we get a real sense of its wonder and
don't merely think of it as yet another number.

Any rectangle, no matter what size it has, may have the
Golden Ratio about it, when the length of the longest line
divide in a way to the shorter. How long the longest side
is compared to how long the shortest side is something we
can call "proportions". That word we typically use when we
do such as comparing lengths and widths. And a related
word--not so typical in daily life language--is "ratio".
And so, 'the golden ratio' is something that every artist
must know about--and has talked about and used for ages,
even though perhaps nobody has exact understanding of what
it is all about. I think it's a bit of mystery to all.
While I talk so warmly about the golden ratio, let's
bear in mind that the world of beauty, art, seeing etc is
infinite--and also infinitely more than the golden ratio.
Let's not get stuck on it. It's immensely useful to know
about, though, if we don't get into greedy over-use of it.

Now we're going to come back to the Golden Ratio after the
next program. You know the ingredients of what comes up--
every bit of it--except one or two small things. And you
even know the Golden Ratio number, because in the previous
chapter we showed that 55 divided at 34 is between one and
two--we got a result that told us that it is about 1.617.
So it's more than one and a half, but not much more. And,
with that number of digits, it's pretty close to the
number that people talk about when they talk about the
Golden Ratio--because that's 1.618! Like the numbers we
talked about in connection to the circle--the 'tp' and the
'pi'--there are studies that show that no matter how many

84



G15 PMN PROGRAMMING FOR KIDS

digits one keeps on adding as decimals, one won't get it
exactly right. But 'exactly right' is for atoms. An artist
can go far with 1.618, or 55 to 34, or 8 to 5 or even 5 to
3. So even if I say that the Golden Ratio 'is' 1.618, it's
good if you remember that these numbers are circa.

Just as we can put the first letter of the Sun in
capital when we please, so also can we put the first
letters of the Golden Ratio in capital--but in such cases
we must also be forgiven for dropping capital letters when
we feel that is easier. All right, so the golden ratio is
about 55 to 34, or, with decimal numbers, about 1.618.

Next, let's Jjust do some programming, so that we produce
the numbers 55 and 34, and many more numbers that all
somehow talk to us about the golden ratio. It's a little
bit involved, but the program is just one card.

So, where does '55' and '34' come in? That's what we're
going to show next. And here, as said, you know every bit
of what comes--except a few thingies. You already know
that:-

'f' makes a copy ('forges' a copy) of number on top

of stack
'w' switches the two numbers on top of stack ('sWitch')
'sh' takes away ('shucks' away) the number that is on
top of stack
and you'll only need one more of these, namely

'd' which copies the second number on stack and puts it
to the top (imagine that it makes a 'briDge' over the
number that is on top of stack, to the second number)

And we already know the other things we need--that 'ad'
adds numbers, that 'nn' takes a number away from the
stack and shows it on the display, and that LL: .. LO
stuff makes a loop. So here we go! Study this little
piece and I'll promise I'll explain everything about it:

fibo= d
1 ad
2 f
nn
11:17 lo

85



G15 PMN PROGRAMMING FOR KIDS

sh

\ sh.
This will produce a series of numbers that more and more
have the golden ratio in between them. How that is, we'll
talk about as soon as we have talked about how the program
works. At some point, it would be lovely if you get it
into card i:1. If you have followed the chapters step by
step on the same PC there's probably stuff on i:2 and so
on also. In one of the earliest chapters in Part A we
talk--in a 'Useful To Know' part--how to cleanse a series
of cards. Perhaps you should do that now? And when you
type in the card, you use your skills--including <CTR>-R
to get to the second column and <CTR>-S to save it to the
right place, i:1, by typing in

il
when it asks and press lineshift after. You'll notice that
when you type in a program in the CAR (as we call it)--the
card editor, that is to say--you will see things about the
program--new things. They suddenly stand out. And that's
no coincidence but exactly how it is meant to be. That
font and that screen size and so on were made together
with the shaping of the PMN part of G15 platform.

So, now let's look at the program and discuss it and
we'll understand it perfectly.

First, notice that 'l' and '2' are put on the stack
right at the beginning. Then there is a LO: .. LL type of
thing--which, as we know, means that the PC repeats
something, in this case, seventeen times. Right? Then,
after the LL (I write it in uppercase sometimes so it is
easier to read in normal text, although it is meant to be
in lowercase when you type it in, as always)--after that
LL you find 'sh' and again 'sh'. So, if the program is
correctly made, there will be two numbers on the stack
when the loop--the repetition part--starts, and there will
still be two numbers on the stack when it's done (but not
necessarily the same two!).

Right, so now let's look at--we can say, 'analyze', the
LL: .. LO part, the loop. What goes on here? First, the
'w', then the 'd', then an 'ad'. Hm. Let's draw that up:

86



G15 PMN PROGRAMMING FOR KIDS

On the stack is 1 and 2. The most last number is on the
top, so 2 is on the top, even if we type it in underneath
the 1. That's a bit confusing until you get used to it.

Then 'w' is done and 1 is suddenly on the top, because
'w' switches those two around.

Then 'd' is done and we have 2 and 1 and 2 on the stack.

Then 'ad' is done and we have 2 and 3 on the stack.

So 1 and 2 was 'magically' changed into 2 and 3. What's
that all about? Let's see, let's see.

The rest of the loop changes nothing--except on the
screen, there is the 'f' and the 'nn' which simply shows
the top on the stack. Right? The 'f' copies the top of
the stack and 'nn' picks it off the stack and prints it
on your PC's monitor. So we ought to see 3 there!

Now, let's have a look, but a briefer look, what happens
when the next round of the loop begins, and the same
series of things--w, d, ad are done again:

First, 2 and 3 becomes 3 and 2, then 3 and 2 becomes,
through 'd', 3 and 2 and 3, then, after ad, we have 3 and
5. So 2 and 3 'magically' gets transformed into 3 and 5.

And 5 is put to the screen!

So, a way to say, in less complicated words, what
happens, is this: the two numbers are added, and the sum
is shown on the screen. But we have kept a copy of the
previous sum we had. So each time, the two most recent
numbers are added.

Notice this, then: the two most recent numbers are
added. Try it in your mind when you look at these numbers:

3 5 8 13 21 34 55
and there we have our pair of numbers that we already have
worked on in the previous chapter, 55 and 34. And the list
goes on--I think we put 17 after the LL: and so we get
really cool numbers like 377 and 233 as well.

How easy is this program? It is short, and we can say it
rather easily--'the two most recent are added'--but it
does require a bit of thinking. I'm not saying it is the
most obvious thing in the world. If we want it to look
more simple, but accept that it gets a little longer, we
can use some commands we haven't used so far in the book,

87



G15 PMN PROGRAMMING FOR KIDS

so that there is less need for 'f' and 'w' and 'd'. I'll
just mention these extra commands, because it is high time
I do mention them--and because they are wondeful to know
about when we do other programs. They also are ways in
which this programming language does have something in its
core that never was in such early languages as the "Forth"
that I mentioned in an earlier chapter, and that is a kind
of 'ancestor' of G1l5 PMN. These simple commands are:

sl s2 s3 s4 s5 s6 s7 s8 s9 and sx
as well as

tl t2 t3 t4 t5 t6 t7 t8 t9 and tx
What these commands do is that they store numbers in what
we could call a 'private' place for each function. So each
function can store as much as it likes in these places,
without bothering about how other functions are made. But
when it comes to the stack, that's shared between all
functions.

To get out the numbers that sl .. s9 and sx sets, use:
il i2 i3 i4 i5 i6 i7 i8 i9 and ix
And to get out the numbers set by tl .. t9 and tx, use:

j1 j2 33 j4 j5 je 37 38 Jj9 and jx
A way to remember them, then, could go like this: "Use S
to InSert into the i's", and, "Use T to adJusT the J's."
And the 'x' is used by the ancient Romans to mean 'ten'.
Now, earlier on, in a chapter or two, we have used,
inside an LL: .. LO type of repetition, one of these
already: we have used 'il', haven't we? Because that's
where the counting takes places, when we have one LL:..LO.
When we have two on top of each other, it uses 'il' and
'i2'. (You might remember this by the 'i' in 'countIng'.)
So we could write the 'fibo' above for instance by
using tl and t2 to set the two most recent numbers. Then,
to add them up, we would write,
jl
j2
ad
and so we could build it up without that much use of the
stack. And so you'll very often find that there are many
ways of doing anything. (That's something that a teacher
on programming languages named Larry Wall has often

88



G15 PMN PROGRAMMING FOR KIDS

pointed out).

Sometimes, then, a slightly longer program is so much
more simple to understand that, unless the PC is pressed
hard to do many things fast, we would prefer to put in the
longer program.

Alright, now let's connect the numbers to the description
of the world that we began with. How does it all tie up?
We spoke of finding some proportions of a rectangle that
is a bit more organic, not like the 'bowl of salt' of only
perfect circles and triangles and rectangles and such, but
which has something to do with life--at least a hint of
it. Now take any rectangle which is about 3 times 5,--it
can be meters or centimeters or feet or whatever way you
prefer. You notice, if you start up the program on i:1 in
the terminal, like this:

~il

cc

fibo
that the first numbers are 3 and 5. That's already very
near the 1.618, which we have talked about as circa the
golden ratio. To see this, we can divide the numbers on
each other, just as we did with 34 and 55 in last chapter.
Then we took the largest number, multiplied by for
instance 1,000, then the smaller, and then we used 'di’'.

And so each of these numbers are formed by adding the
two most recent. In drawing up a rectangle, this somehow,
and I admit it is a bit mysterious, but it works--it
somehow becomes this: that each rectangle as it were
contains an infinite number of itself within itself, both
smaller and larger versions. We get some kind of spiral
effect and somehow we notice this in our minds, our eyes
pick it up, back there in the depths of ourselves, and it
automatically becomes something more interesting about
this rectangle compared to other rectangles.
Let's see how that can be. If you have a rectangle that

is 5 times 8 in size, you can chop off a square that is
5 times 5 and that leaves you with a smaller rectangle
that is 5 times 3. You can do it with pieces of paper.
Make the largest perfect square you can, clip it off, and

89



G15 PMN PROGRAMMING FOR KIDS

what remains is a rectangle that, although it is smaller,
is about 5 times 3. Now 5 to 3 isn't far from 8 to 5,--in
fact, these are all numbers that the fibo program made!

Right? It made these numbers: 3 5 8 13 21 34 55 and some
more like that. So the nearer we have this perfect golden
ratio that these numbers work up towards, better and
better, the more it is the case that each time we chop off
a square, we have the same rectangle all over again, just
smaller!

The more perfect the golden ratio of our rectangle, the
more it becomes possible for your eyes, your mind, your
brain, to get a swirling kind of spiral through the edges
of this infinitely many equal but different sized
rectangles, all contained within one another.

To actually draw a spiral is possible if we take a line
that swirls through the corners of the rectangles, which
are inside one another. And this spiral turns out to have
a shape that is often found in Nature.

Now, we can go the other way as well. Suppose we start
with a 3 times 5 rectangle. Take the longest side of it,
which is 5, and make a square just this size--5 x 5--and
put it beside that rectangle on its longest side. Then we
have a 5 x 8 rectangle. You see the numbers here? 3, 5, 8.

How is it that your eyes, your mind, can do this sort of
thing in a blink? Because shaping a full square, or taking
away a full square, is one of the easiest and most natural
thing for your mind to do when it studies anything at all,
from infancy and up. It is just such a natural thing. If
a circle isn't full, then maybe one just has to look a
little more, and it becomes full. If something of a square
is there, perhaps it's just to look a little more, and one
can see the rest of the square--or something like a square
--or like a circle. You see? There is a word, a long and
complicated word for this way of looking at things, and
it is called 'Gestalt Psychology'. We naturally look for
simple patterns to fulfill themselves. We're born to do
it. Our minds do it all the time. When we study this sort
of thing in science, we have another word for this--a
long and complicated but very fine word, and that is
'perception'. So we can talk about 'seeing Gestalts' when

90



G15 PMN PROGRAMMING FOR KIDS

we mean to see such simple patterns, and when we don't
just talk about seeing but also listening and feeling and
and so on, we can say 'Gestalt perception'. Yes, in music
and all the other senses, the golden ratio stuff comes in
wonderfully.

So, when our minds, armed with this amazing human skill,
which works fast as lightening and often without us
noticing it very much, meet with the golden ratio, some
kind of natural inner activity raises up. This natural
inner activity becomes an excitement. Things happen. And
for instance in dance, when you see the movement of the
body, you can imagine how many times each minute some kind
of golden ratio here and there is touched on--even if only
for a split second--but it adds up, and contributes, to a
sense of beauty. It's not the only thing about beauty, but
when we explore beauty, think about beauty, then we
understand more when we also think about the golden ratio.
Keep it as a glowing question, always alive: what is the
golden ratio? And is it somehow hidden here, or there? Is
it part of this or that intense experience?

Part B, chapter 3: GETTING WILD WITH WARPS

In the previous chapter we talked about golden ratios, as

921



G15 PMN PROGRAMMING FOR KIDS

part of the experience, also intense experience, including
of such things as beauty. One of the most obvious places
to go if you wish to think about beauty is to somewhere
flowers are growing. There's such a balance there, between
symmetry and the lively, mild breaking of symmetry, that
the sight alone can be breath-taking; then add to all that
the actual magic of scents flowing to our nostrils from a
vast variety of flowers; and the delight in seeing how
they stretch towards light and require not much more for
their fantastic work than a bit of water and soil and some
tender care.

Yet study the flowers a little deeper, and you'll notice
that, for all their similarities within a type, the exact
way each flower grows is quite often unpredictable. Will a
new stem sprout off here, or there? Will it be this number
or that number of buds? Will they open simultaneously or
one by one or will some buds just drop off?

And there's a lot of fine words in the English language
that somehow ties in with the human fascination for
flowers. One of these is 'stamina', which not only is
something we talk about when we have a lot of energy and
motivation to train or swim long distances or whatever,
but it is also having to do with the core of the flower
and how it may reproduce itself by an almost sexual
contact between itself and other flowers--a process that
may be helped by human instruments also.

Another word, used also to talk of just this way in
which a new stem may suddenly arise out of an existing
stem is 'warp'--we might say that "the new stem warps
out". The idea of warping carries over to different parts
of human living, where it becomes a word that we can,
perhaps for fun--also in stories about outer space--and
sometimes for real (in one way or another)--use to mean
something like a great sudden change. It can be a change
that is perhaps surprising.

An example where we could use the word 'warp' is when we
play together, and then something changes. Perhaps the
play, being a mild fight, becomes a real fight. Perhaps
the play, being of one kind, changes into something, still
harmonious, but an altogether different type of play--and

92



G15 PMN PROGRAMMING FOR KIDS

not in a way that is exactly following what happened
before. We could say, "the play sort of warped into a
different thing".

A mild play-fight can become a serious fight--or a mild
talking together can become angry shouting. Is such a
change always a bad thing? But if we are always mild,
always entirely mild-mannered, we may find ourselves so
that when it's good that somebody else have got to change,
we are not going to help produce that change. So a warping
can be dramatic, or it can be just a warp from one easy
light-hearted experience to another, or a warp from some-
thing experienced as bad to something experienced as good.
The word "warp" covers all these cases.

Now I have softened up the word 'warp', and in this
chapter I wish to say that it's a most central word in
G1l5 PMN and one of the things that somehow stands out a
bit compared to what I know of the history of programming
languages. I know of other words, used in other
programming languages, for something of the same--but the
very choice of words show that it isn't quite taken to
mean the same thing (the most common alternative is this:
"pointer"--and I think you agree that it doesn't have the
same flavour of direct change at all--and so it leads to a
different type of thinking when it is called that).

In using just about anything in G15 PMN, you have already
used warps. I will prove the point. Get up the terminal,
as an experiment, and type in what day it is, with &
before and & after also. Like this, perhaps:

&thursday&
Have you done it? Great. Now next, you might want to
something like 'pp' or like 'b9', both these displays the
word once more--but please hold back a moment. We are
going to do it different this time. What we will now do is
to have a look at what goes on behind the scenes as it
were, or 'under the 1lid' of the machine. I want you to
'get a feel' for warps, and I tell you: there's a warp on
the stack right now. To prove the point to you, please
type in (the first 'f' command makes an extra copy of the

93



G15 PMN PROGRAMMING FOR KIDS

number, so we can have a look at it):
f
nn
and you get some kind of big number. It could be 23043232
or 798034823 or 5654459--I have no idea which it is. And
that's one of the things we can know about a warp: it's a
type of number that can change between each PC and even
change from one run to another on the same PC. What can we
use that number for? It turns out that, even if it is a
bit strange, it has many uses, many uses indeed. One use
is this: we can--especially if we store it somewhere--
show the same text several times, or do other work on it.
So, assuming you are still using that terminal, type
SX
What now happens is that we can use the command 'ix' to
get that peculiar number out several times over, as long
as we use this terminal anyway. (You remember 'sx' and
'ix' from the overview in last chapter? We had sl, s2, s3
and up to s9 and then sx, remember? And then il, i2, i3
and up to i9 and then ix to get it out.)
So let's try to make use of the warp! Try, for instance,
ix
pp
and the name of the day comes out in robotfont. Try then,
ix
b9
and the name of the day comes out in b9font. There are all
sorts of things we can do with a warp like this,--one more
example is this: how many letters does it have? Then we
use the command 'lk'--which is a shortened form of "LooK"
(or "luck", if you like)--and it will look where the warp
says it should look, and the first thing it comes around
to find is the number of letters. Try this, if you like:
ix
1k
nn
and it will say how many letters of the name of this day.
In case of us entering &thursday&, for instance, it should
say 8. Had we written & thursday& it would have said 9,
for it counts blanks also.

94



G15 PMN PROGRAMMING FOR KIDS

In a moment we'll look into an even more dramatic type
of warp. But first, let's summarize something of what we
said in a 'useful thing to know':

===>USEFUL THING TO KNOW: A WARP TO A TEXT CAN SAY LENGTH
In G1l5 PMN, the word 'warp' can mean several things, but
they are all related. Usually, they are really big numbers
and in by far most cases the warps are different between
each program runs. So the smart thing to do is to find out
way to 'get warps' out of the machine and then store them
somewhere--and be sure that the next time you run the
program, it gets entirely fresh and new warps. When we
talk of a 'warp to a text', we typically may mean a number
that is so that--at least if the text is tiny--we can give
it to 'pp' or such. And whenever we use &..& there is such
a warp on the stack. So, for instance,

&The Suné&

SX
stores the text "The Sun" somewhere in the PC's memory,
and the number--the warp--can be fetched by 'ix', so that
this will show it again:

ix

pp
and in these cases we can find the length of the text by
using the command 'lk':

ix

1k

nn
will tell '7' since "The Sun" has seven places (characters
--we can say--and a 'character' includes also space).

Let's at once now jump--or 'warp'--to another way of
using that word, "warp": not just texts, but also the
little programs we are making and giving names by = and
finshing with a dot . are having warps. This is some of
the funniest ways of programming there are--but to see the
fun of it, we have got to learn a few more things, also
about something called 'arrays' (which is a way we store
many numbers in a series).

But it's easy to learn warp in this way--and it is more

95



G15 PMN PROGRAMMING FOR KIDS

truly living up to its name when we see what we're going
to do next. See here, let's have a very tiny program
typed in on the terminal, something like this:

sayhi=

11:15

&You=the bests&

pp

lo.
So each time you type in 'sayhi' it will say, fifteen
times, some little funny text like that--You==the best.
Test it just once and then we get on to finding its warp!
This is how (the " sign is often found by <SHIFT>-6):

“sayhi

ff
and now there is a mystery number on the stack. A warp. Or
a warp number. The warp is "to the function" 'sayhi'. You
could have written &sayhi& instead of “sayhi, but the use
of the ” sign is enough when there are no blanks in the
text. We have to put some kind of quote-sign, like " or
&..& around the 'sayhi', otherwise it will just perform.
This time, we didn't want it to perform; we wanted to
find its warp. Store the number! Type,

sl
and as you type this, it will show the number:

il

nn
What is it showing? 2339939 or 89564895 or 7543844 or
anything between 1 and a billion or so. I have no idea,
nor does it matter exactly what it is, as long as we have
it stored with its exact value that it has in just this
run on the terminal on just the PC you are using right
now. Your neighbour's PC may have a different value. It
doesn't matter. The clue is that it is now the right wvalue
--the right warp--for this run of the terminal. Let's put
it to test! Type

il

pf
and look what happens! The function starts, the little fun
loop shows the text, you=the best or whatever it was,--
but completely without us having named the function. So

96



G15 PMN PROGRAMMING FOR KIDS

'ff' means 'find function warp' and 'pf' means 'perform
function warp'.

If you don't believe me, try printing out the number on
the screen again, by

il

nn
and, for the sake of the argument, let's imagine that the
number you found was 8590299. It's going to be different,
but if it was, then you could type

8590299

pf
and, lo and behold!, again runs your program. Instead, you
type the number you found--exactly right--and then pf. And
you find that your fun little program starts.

In case you wish to upset the PC so that you practically
have to cut the power wire--no, I don't mean that--but you
may certainly have to reboot it, type any number you like
and then

pf
and do it with your hand at the power off-button! This is
not recommended practise, but you should have a go at it
as a budding forceful programmer! You may also find that
nothing at all happens. If so, try another number, but
very quickly type

qu
and get out of the terminal and then do the normal CTR-Q
and type REB for reboot. For something about the PC may
have gotten wierd. Because you warped its 'memory', its
RAM, --quite possibly. And to be moralistic, never do this
with a PC that has something like a robot connected to it,
because the robot may do dangerous movements. So, now you
have it--you see what power you have at your fingertips,
literally! Let's sum this up:

===>USEFUL THING TO KNOW: WARPS CAN BE TO PROGRAMS
If you have any program, any function, of three or more

letters, you can find its warp number by 'ff'--'find
function warp'. For instance, if you have made 'myprogram'
“myprogram
ff

97



G15 PMN PROGRAMMING FOR KIDS

and then, once you have it, you may want to store it
somewhere. If you store it, for instance, by 'tx', you
can get it out again by 'jx' and then you can perform it
by 'pf'. Here's how: first store it:

tx
then, each time you wish to run that 'myprogram' you can
write

ix

pf
And there are still more types of warps--also to arrays,
where we can store warps to many programs and keep them
available in between many functions in your program.

Let me just add a note about how we talk about these
things--it may be easier in the beginning to say, 'a warp
to something'. But you'll often encounter other ways of
saying it, such as 'a warp of something'--such as, 'the
warp of a function', or 'the warp of an array'--or even
yet shorter--'a function warp', 'an array warp'. These are
all the same types of things that we discussed in this
chapter. And instead of saying, 'let's perform a function
via this warp', we could say something like, 'let's warp
to this function!'.

Part B, chapter 4: THE DEEPER MEANING OF ETCETERA

98



G15 PMN PROGRAMMING FOR KIDS

You have perhaps noticed how almost everything--if not
everything--we have done at the computer so far somehow
have had to do with numbers. And yet they have given rise
to other things, letters, dots, even star-like dots, mouse
like movements, calculation, thoughts about the golden
ratio and so on. And of course, when we discussed warps,
we discussed still more numbers. So we have numbers, and
they can do certain things, it seems, when they are in a
particular place in the computer.

Even before the time of computers, many thinkers, or, as
we call them, philosophers--seekers of truth, wisdom,
lovers of the mind, the world--were enthusiastic about
numbers and how they somehow may partake in everything--
even music.

One of the things--and it's fair to say that the contro-
versy still exists at the time of writing this--that has
created disagreement between thinkers has to do with how
numbers like 1, 2 and 3, connect--or don't connect at all,
with the idea of the infinite. In one way, they seem like
a big opposite: the numbers are very much not infinite--we
can call them 'finite'--and then we can imagine some kind
of infinite landscape without borders even a million
billion kilometers away,--a landscape in which there is no
point of trying to apply any number for it is forever
beyond even the largest number possible to write.

For instance, let's imagine that we have some kind of
gigantic group, or bag, of numbers. Some thinkers have
wanted to use the word 'set'--they say, let's imagine that
we have a 'set' of numbers. A big collection. And let's
imagine that it is so big that every number from 1, 2 and
3 and up is in it.

They have tried to think through this and they have
called such a set for N. And they say: it is so big that
no matter how big a number you think of, N has numbers
that are even bigger. So N must be infinite in size.

Now I'm going to give you a bit of my own take on this,
and perhaps, at the moment of writing this, my take on it
isn't very common--just so you know. But I think it
belongs in a book that teaches you much about numbers,

99



G15 PMN PROGRAMMING FOR KIDS

also in programming--and I have thought about this when
shaping G15 PMN. It isn't very practical, but a sort of
day-dream type of thinking about infinity--but then, later
we may find that it gets a little practical after all.

Let's see, then. All right, let's think about this
collection N. What type of numbers are in it? I'm going to
suggest that some very funny type of numbers sort of
jumped into it, even though we didn't say it should be so.

Just think again of its size: N is a group of all
numbers there are, from 1, 2, 3 and up, and so the size of
it is infinite. Very well, it is gigantic. Greater than
any number we can say, when it comes to how many are in
it.

Let's ask this: is the size of it some kind of mystery
number? Well, it's infinity. But is infinity a number?
Some have said--perhaps infinity is a kind, a very special
kind of number. But we put only ordinary numbers inside N,
so even if its size is this special kind of number--let's
call that special kind of infinite number for i--we would
perhaps not expect it to be inside N. After all, we begin
with 1, 2, and 3, and go up in easy steps.

So this or these mysteries, 'i' for infinite, isn't in
the set N--that's the idea most thinkers in both past and
present have. My take on it is that somehow the i's have
gotten into N after all. And I think I can show you how
my argument may be right. Just let's build up the idea of
N a little slowly, and we'll see it together.

We start with 1, then we add the number 2 to it, then we
add the number 3 to it. So, in building up the idea of N,
we first see that it has size 1, then it has size 2, then
it has size 3. Right? So onwards with 4, 5, 6. And up we
go. At every step, we find that the size of it is in the
bag. Right?

Then, how do we imagine, in our fantasy world where all
sorts of things that make clear ideas can be seen and felt
and thought about, that we complete the building of N? We
must imagine that it stretches out, as we add numbers in
the thousands, in the millions, in the zintillions or
googleplexions or whatever we wish to call such fantasy
numbers--and onwards and onwards, like clouds in the

100



G15 PMN PROGRAMMING FOR KIDS

distant horison. Further and further and further. At every
step, then, it's natural and a clear idea to say: the size
of it, even if it is very very big, is still some kind of
number and this number is in the bag N. Okay?

Then let's will forth the sense that we sweep forward
infinitely fast and see that N is complete. We have lifted
our gaze a little above the furtherst cloud, and it is
now complete. It is done. N is infinite. N is infinite in
size, something like 'i'. When we did lift our gaze, and
peeked into the horizon and above it, we never said: we
are going to disconnect the size of N as we build it from
the numbers we put into it. So, when we lift our gaze and
let the size of it go to infinite, we also are letting the
numbers inside it go exactly together with this. That's
the clearest idea. And clear ideas are all we can ask for
when we talk about the infinite. We can't get the machines
to help us out very much in these things, for machines are
only about the finite. Right?

So, to repeat the last steps: we keep on adding larger
and larger numbers to N and the size of N keeps on
becoming bigger and bigger--and all the time, the number
that is its size is also inside N. The number 'outside' of
N is also inside N, if you like. Right? When it had just
three members, three was its size and three was also
inside it. When it has three thousand members, three
thousand was its size and three thousand was also inside
it. And when we lift our gaze and sweep through the
universe or multiverse or cosmos or whatever we call it,
in our imagination, then both the size of it and the
content changes, from the finite, into the infinite. How
can it not? We don't have any instrument, any way, in
which we can prevent the infinite from somehow getting
into the bag!

(The advanced students may object: can't we filter out
the non-finite numbers afterwards, by checking whether
they can be made by 1+1+1...+1? But how can you hover
over an infinite process with such finite tools of
calculation? That isn't a clear idea: it is clearer to
say that infinity changes the situation fully. Adding
such features means adding something that contains the

101



G15 PMN PROGRAMMING FOR KIDS

infinity questions all over again, and we can use the
same way of picking such added features apart.)

So the puzzling thing is that when we write something
as simple as 1, 2, 3 and up, we are writing something that
really takes us into the infinite in more than one ways.
This mystery number i,--perhaps it is not just one, but
many such mystery numbers. So it's more like, in my take
on it, like 1, 2, 3, ... 1 ...

Another way of writing this is: 1, 2, 3, etc, i, etc.

And this has room in for the sense that i somehow is in
movement, isn't just one thing, etc.

You might think that after a hundred or a thousand
years, philosophers might have figured this one out so
that nobody can disagree. But they haven't. When it comes
to how infinity is understood, in number thinking, only a
few has disagreed. I should mention one name here, a very
respected name in logic--L.E.J. Brouwer, a Dutchman who
lived in the 20th century. He would have nodded to my
doubts of how the mainstream has handled infinity, even
though he didn't say the same things as I do.

To be a little more concrete, in mostly all writing--
but not so much in the writing of L.E.J. Brouwer--those
who have been thinking deep about numbers and infinity
have thought it fairly much a clear idea that we can make,
in our minds, a set N such that it has all finite numbers
and only finite numbers. After all, it's easy to say.

But when we look at it in our imagined world together,
and that's something everyone can do--and children are
often great at thinking in free and also philosophical
ways and about universes and such--this I know for I
regularly teach children--we saw that when we build up the
set N, it's a big leap of imagination to get to the point
that it is infinite. And when it is, we cannot be sure
that it doesn't have some kind of infinite mystery
numbers inside it. Rather the opposite, it seems almost
certain that it does have some infinite mystery numbers
inside it.

For advanced students:-
Just a brief comment on language, I use 'i' here just to

102



G15 PMN PROGRAMMING FOR KIDS

talk about some kinds of infinity, not that 'i' hasn't or
cannot be used in entirely different ways. And when I say
such as 'infinity number', I do so well aware that to some
the whole idea of talking about 'infinity' and 'number' in
the same breath is patently nonsensical. (Let me also add
that there are some thinkers, including G.J. Chaitin, who
has used a symbol--omega--to stand for something which has
some similarities with our 'i' here, but if you read this
chapter throughout, you'll see that this isn't his take on
it--and although I find flaws with Mr Chaitin's approach,
I like that people are calling out disagreement with the
present dull mainstream as for thinking about these
things.)

All right. I have told you my take on it, and how most
have been talking about it, and I have told you about my
disagreement. If I'm so lucky that you go along with
believing in me, then let's together ask a question: what
does it tell us about numbers or about the infinite? What
can we say now, that wasn't that easy to say before? What
cwe see now, that is new, and that comes out of our
imaginations and musings over the infinite cosmos?

Well, perhaps this: that when we began talking about
the mystery infinite numbers, we came to them by a lot of
movement in our imagination, and we also, perhaps, came
to a sense that there may be many more of these infinite
numbers. So these are some words:- movement, more of them.
If there are more of them, there may be an infinity of
them. We can use the word 'diversity'. There may be a lot
lot, a diversity of infinite numbers i. And somehow they
arise because it isn't clear how we can 'close them out'.
So they are naturally there.

From this, then, we can then suggest: perhaps it's more
natural, more easy, to talk about an infinite world in
movement, where numbers are naturally somehow part of it;
and that when something stands out as a more still and
fixed and finite number like 1, 2 or 3, it shouldn't be
taken to mean that it doesn't somehow connect to all these
moving infinities.

And this leads us to suggest: the finite numbers are

103



G15 PMN PROGRAMMING FOR KIDS

somehow 'created by' infinite numbers in some kind of
movement. An image that could suggest this: when two giant
waves on the ocean meet--if they meet in a very direct way
and are really huge--they may create a new series of waves
--perhaps as smaller ripples. And so perhaps the finite
numbers are created with infinite numbers meet and dance
together, as it were.

It's just an image, of course, but it is a type of a
philosophy of numbers and the infinite that just may
just happen to be more right than many of the things that
have been said about cosmos and numbers by those who
perhaps haven't looked into this puzzling giant collection
which we named 'N'.

(For advanced students: it is quite common to talk about
many different infinities in 20th century literature on
sets. But these have usually taken for granted that 'N'
in the narrow way mentioned--that it is easy to ensure
that it has only finite members--is a starting-point. In
the case that their idea of 'N' is unclear, most talk
about 'many infinities' or the like in 20th century logic
becomes meaningless and one must start all over again.)

So where do we go from here, to come back to our G15 PMN
programming? We are going to work, in fact, with something
much like a 'set' or a 'collection'--and in G15 PMN we
call this 'array'. And we have learned that in our minds,
we can say 'etc'--which comes from ancient Latin, 'et
cetera', which means again, 'and so further'. But on the
computer, we must always tell how big something is going
to be before we make it, and it must not only be finite
but clearly fit within the sizes that the computer can
handle. So that's what we are going to do next!

So let's roll up our sleeves, if we do have sleeves, and
work out something on card i:1. Before you do so, you
should check that i:2 and some cards up are all clear--
that they have those squarish images that tell you that
the card is what we in one of the first chapters in this
book called 'nil'--which is to say, nothing. And in case

104



G15 PMN PROGRAMMING FOR KIDS

some cards need cleansing, you have a 'useful thing to
know' in just those early chapters that tell you how to
clean cards, you know--so they become 'nilcards’'.

Let's imagine that we are on our way to build a game,
which has to do with money--this kind of dollar, that kind
of dollar, you follow? Then we would want a place to store
how much money the player has, so that any function we
make can change that sum or read that sum quite freely.

Something like this can do the trick--and it's called a
'variable'--but wait a moment before we put it to card i:1
because we are going to add a little more:

money=

A
.

So what's all this about? The new word 'money' is created,
with the normal '=' at the start and the normal '.' at the
end--but there is nothing there! Except this " (which is
often found at <SHIFT>-6, ie, above the digit 6). We have
seen it briefly before, when we talked about warps, in the
connection with 'ff' or 'Find Function'. We said it was a
way to quote something when it doesn't have any blanks.
Well, that's right. There are no blanks here! But also
there is no size to the quote! But that's fine, for all we
need is to store a number, that has to do with money. And
a quote always begin with a number that tells its length.
The fact is that this doesn't have to be the length, as
long as we stick to a certain way of using it. There is

room for just one number whenever you see that '".' thing.
So, in short, when there is something like
blablah=
then you can think of © as a 'v' in Variable upside-down.

For that's just how we make a variable in G15 PMN!
So here's how to put a value to it:
money
10000000
k1l
and here's how to get the value out of it:
money
1k
so that we can show it eg by

105



G15 PMN PROGRAMMING FOR KIDS

nn

You see that 'kl' and 'lk' are the same letters, just the
opposite way. The command 'lk' you can think of eg as
'LooK'. When you turn it around, you might think of it as,
for instance, 'KiLL the earlier value there and put in
this instead!' or, if you are a pacifist and like to
spell things with 'k' instead of 'c': 'KoulLd you please
put this value to this variable!'’

A thing to remember: when we speak of a variable, we mean
a way to store one number. When we speak of an array, we
mean a way to store many numbers. In the next part we will
also work out a clever way to arrange arrays so that they
have both columns and rows (like the dots on the screen),
and this type of array we call 'matrix'. Matrices can have
even more about them than just columns and rows, too.

So these things you could test at a terminal if you like,
but I understand that you are now rapidly learning G15 PMN
and merely by glancing at the above you comprehend it
fully. So let's raze on! For we said, didn't we, that we
wanted money in more than one currency. Several types of
dollars, for instance. So we have to tweak, to fix on,

how we use this money variable a little. This is one way
to write it (and, as always, there are more ways, and some
of the other ways are much shorter, but this is the way
you can do with most arrays of any size)--here's card i:1l.
Type it in and we'll talk about all parts of it. Then in
i:2 and i:3 we'll put it to use. This is a way to make an
array, whether it is as short as here, with only three
numbers, or a million times as big:

money= &&
3 money
Sz k1l

As always, it doesn't matter where you put the blank lines
as long as you like it that way. And we read it so that it
is first the left column, then the right one (and the
start of the right one you reach by <CTR>-R, when you are

106



G15 PMN PROGRAMMING FOR KIDS

in the Edit mode of the card, which you get to by doing a
[RIGHTCLICK] with the mouse).

And now the explanation!

First, we make the variable called 'money'. Fine, we
have just talked about that.

Then we put '3' to the stack. That is the size of the
array we are going to somehow connect to 'money', so that
we can have three types of money currencies in it.

Then, 'sz'. You guessed it, it means 'SiZe'. So this
'sz' command, which we use before or in between or after
making functions, tells the PC that the next quote, no
matter how small it is--it can even be entirely empty,
like when we type &&--that quote is going to be roomy, so
it can vary in size however much we like up to what we
tell 'sz'. And the quote can be an array of numbers.

You got that? You put a number to the stack, in this
case '3'. Then you write 'sz'. Then you type in '&&' or
something like that--a quote--and this quote doesn't have
to be used as a quote of letters, it can be an array of
numbers. That a quote also can be an array of numbers
isn't all that strange when we remember that everything in
the PC, including letters, is stored as numbers (as we'll
in the next part, big A has the number 65, small a 97).

And, yes, indeed, after the 'sz' we do see a '&&', right
on top of the start of the right column. When we have done
one 'sz' and then a '&&' then we have sort of 'used up'
that 'sz' command. We can make many arrays after one
another but then we put in many cards like this after one
another, and every one of them can have a 'sz' and a '&&'
in them. (Or we can cram several arrays into one card, or
spread them over even more cards--that's just a matter of
how we like to put in blank lines and divide things up.)

The last two lines in our i:1l card says: 'money' and 'kl'.
This tells the PC that the array we just made is going to

be stored, somehow, in the variable money. If that sounds

funny--yes, I agree!--it sounds funny. So let's say it in

a more precise way: the warp to the array is stored in the
variable. Or we can say, 'the warp of the array is stored

in the variable.'

107



G15 PMN PROGRAMMING FOR KIDS

Exactly how we say it doesn't matter so much--because
we'll do this thing many times over and then you'll get
entirely used to it. The clue is that this type of card
you got above is how to 'set up' an array of any size--
and though there are shorter ways of setting up especially
small arrays, this is the way that is enough to use for
most purposes.

The next thing we have got to learn about arrays is how
to put things into them and how to put things out of them.
The rule of thumb is: you tell which position, which place
--which position number--you want to put it in, or take it
from. For this we have two simple commands, 'ay' and 'ya’'.
The 'ay' is as ArraY and 'ya' is, of course, the opposite
sequence of the letters. So 'ay' is to get it out of the
array and 'ya' to 'yapp it in'!

If we really were programming a game right now, I suppose
it would make sense to give the player some start money.
Let's imagine that we give the player a 1000 dollars of
the first type, 2000 dollars of the second type, and 3000
dollars of the third type. Then we could do something like
this, in i:2:

1000 1k

1 ya
money 3000
1k 3

ya money
2000 1k

2 ya
money

This should perhaps have been typed in over several cards,
but just read it in sequence: 1000 goes into position 1.
2000 goes into position 2. 3000 goes into position 2.

A clue is to read 'money' followed by 'lk' as one thingy.
The word 'money' is a way to get to the beginning of the
array, but we need 'lk' to bring it about.

Is it confusing that the 'lk' appears on top of the
column to the right? But sometimes it is good to train
oneself to read it as one flow--regardless of layout on
the card. The computer goes through one step at a time. So

108



G15 PMN PROGRAMMING FOR KIDS

can we do when we analyze what we type in.

So we 'yapp' in a 1000 to the first position in array
money, 2000 to the 2nd position, and 3000 to the 3rd
position. This we can do just like that--we don't have to
make everything into a function with = and a dot, when we
want it to be the start-up stuff. Do you mind getting this
into card i:2?

What we have just done is, if you like, to make a 'set',
the set of some money, which we could write like,

{1000, 2000, 3000}. We began this chapter by talking about
how complicated it gets when such innocent-looking sets
get something like three dots in them: {1, 2, 3, ...}.
Then we must bring in our imagination, and imagine it as
well as we can, and when must not only imagine it, but
also try and find out things that we can never check with
our senses--in other words, we must use 'intuition'. And
that's something a machine obviously doesn't have.

So when we work on an array on a PC, it is as finite as
just about anything can be finite. When we make it, we
start out by telling its maximal size. Then we must live
up to the maximum size when it comes to putting things
into it and getting things from it or the PC will protest.

The PC has memory--what really should be called 'memory'
with quotes--and this is also called RAM (technically,
that's because it was often called 'random access memory'
to indicate that one can both read and write to it and,
and that the sequence is free and 'random'). The RAM of
the G15 PMN PC is organised so that when you have the
warp number of it, you can at once go and get the stuff
that's there, or change it. The warp numbers are, like all
the core numbers in G15 PMN, never higher than about 2
billions.

Most of the time, as we have said, the warps work so
that you don't have to actually view those numbers. But
when we typed this into the PC,

3000
3
money
1k
then, just so you know,--at this point, there is a warp

109



G15 PMN PROGRAMMING FOR KIDS

right there on top of the stack, which points straight at
the first free position in 'money'. So when the next
command is entered,

ya
it takes it for granted that the warp of the array is on
top of the stack, and right underneath it, position, and
right underneath that again, the value we want into it.
So to think of stacks is a sort of 'vertical' thing--and
that which is on top of the stack is the last thing you
typed in. We should get used to changing things around in
our minds a little bit, then, to think of stacks clearly:
we type

3000

3

money

1k
(again, remember to think of 'money' then 'lk' as a thing)
and what's on stack is then the opposite way: with money
on top, then 3, then 3000. Yet another way we can turn
this around in our minds is to write it from left to right
so that we can put it into a comment line. Remember the
comment lines? They begin with a vertical bar, |, and can
look like this:
| A fun program
| Updated today
If we wanted to make comments to explain how 'ya' works,
we could say something like this:
| ya expects:
| n pos warp
| on stack,
| with warp
| to array
| on top
You'll very often see 'pos' where we mean 'position' in
comments, so it gets short and snappy, and just 'n' to
mean any suitable value or number. You'll also often, in
comments to functions in G15 PMN, also see this type of
writing--"n pos warp", or, "n, pos, warp"--or some letters
like "a, b, c¢" written. This is to be read so that the
rightmost thingy is on top of the stack. And there may be

110



G15 PMN PROGRAMMING FOR KIDS

one comment line for the things that should be on the
stack just before a function starts, and one comment line
for the things that will be on the stack after it has
done its job. In the case of 'ya', it just stores, so we
don't expect it to give anything extra on the stack. In
the case of 'ay', we expect it to give the value of that
which is in the position on the stack.

We have gone a long long way in imagination--in a sense,
we couldn't have gone any longer--we have been to infinity
and back!--and we are working with a lot of new things
here. So we're going to finish it quickly, by getting the
quickest, easiest feedback from the computer as to how
much money we have of each type. Just two cards--and we'll
try it--and that's it! A brief explanation I'll give after
we've tried it--to add on what's already said.

So, here's i:3, and i:4 completes the function 'ourmoney':

ourmoney= &Dollar #2&
&Dollar #1l& PP

pp 2

1 money
money 1k

1k ay

ay nn

nn

Then, i:4, so identical you could copy i:3 if you like,
and put it in by <CTR-T and fix on it (hint: you can press
just <ENTER> after <CTR>-C when it's just one card):

&Dollar #3&

pp

3

money

1k

ay

nn.
This card i:4 can of course have a different spacing--you
can use left column or both left and right columns. This
is just how it might look if you space away the first
column in card i:3, if you copy it over to i:4, and then

111



G15 PMN PROGRAMMING FOR KIDS

modify the number '2' there to number '3'. In addition,
put in that dot . on the last line.
When ready to see if you have typed it right, start up

the terminal, type

~il

cc
and when it is right, try type

ourmoney
and it should tell the sums we put in first, just very
very simply.

All right, so how does it work? The function begins by
printing "Dollar #1" to the screen. Then several things
are put on the stack and 'ay' is done. The command 'ay'
fetches a value. Which value? That's the 'l' there, in
the first column of card i:3. So that's the money in
position #1. Right. We then see the phrase 'money'
followed by 'lk'. As said above, but we repeat it: it's
a kind of unit or package. The 'money' is the place where
we have the array warp and 'lk' brings it up front. So
we'll very often see

arrayname

1k
together, whether we use 'ay', 'ya', or some more exotic
words, which we'll encounter in the next part, such as
'ww' and 'yy' (for matrices).

And once 'ay' has produced the money of type #1, it
shows this number on the screen. And onwards to column 2,
and then the last column, in card i:4. They do exactly the
same except for money type 2 and type 3.

All this was a lot of learning and you can now relax--we
are going to make use of this array type of stuff in
various places so that you get more and more used to it.
And we'll see that it helps programming tremendously that
we have these things, arrays in their various forms. It is
quite something to learn to work with.

To finish this part off, before we're on to the next: we
are seeing how the machine expects absolutely every little

112



G15 PMN PROGRAMMING FOR KIDS

detail to be spelled out or else it won't do anything. In
that sense, we are perfectly right when we say that the
machine is 'stupid'--in another sense, we don't really
have to call it that, for it is neither 'smart' nor
'stupid' for both of those words we use about living human
minds and a machine isn't even on the starting-line as to
having a mind, right?

And then, when we think about the larger questions--such
as infinity--the machines can't help us, not directly
anyhow. They can give us some confidence that we know how
to handle some numbers, but they can't say whether we have
the right guesses or intuitions when we speculate about
what goes on in the imagined infinite landscapes of
possible infinite gatherings.

In a sense, to simplify enormously, we have three fields
of activities when we work with G15 PMN this way, from one
week to the next: we work with finite numbers; we allow
our minds to touch questions of infinity; and thirdly, all
sorts of things--work, dance, eat, connecting to friends,
new and old, and people who are strangers but whom we may
want to know. So here we may have experiences of love and
dialogue, sometimes conflicts, sometimes misunderstandings
and apologies, and sometimes great fascinating new plans
are made in collaboration with others.

In all these fields of activity--the finite, the
infinite, and the social/private/interpersonal etc, we
can have a lot of fun, and energies may flow between these
avenues of unfoldment--'synergy', we can say. Yet, about
infinity--plese don't overdo speculation about the
infinite. Touch it--because that's part of the whole
speculation about cosmos which ignites something of our
inner flames--but don't get burned by trying to wrestle
'control' over the infinite. It can't be done. Be a
visitor, but gently, as for the landscapes of infinity,
and seek to leave without a trace each time.

113



G15 PMN PROGRAMMING FOR KIDS

114



G15 PMN PROGRAMMING FOR KIDS

PART C: THE WORLD IS YOURS

115



G15 PMN PROGRAMMING FOR KIDS

Part C, chapter 1: THE WORLD OF ENGLISH LETTERS: ASCII

In Part A you got acquainted with the G15 PMN computer and
the programming language (unless you already knew it and
have jump-started into the book, eg here!). In Part B we
did some pretty tough experiments with numbers, large and
small, both in our imagination and at the PC in various
ways. Hopefully, you got the sense that the numbers aren't
fighting you but that you can make friends with them. By
them, we can rule over the computers and make them ours.
And all the while, we have sprinkled in some big thinking
on the wonders of life and how we mustn't think of
ourselves as machines. When we have sorted out these
things, the computers are there to help us, and they will,
indeed, be truly helpful.

Most of the time, we put some stuff to the computer as a
program, and the program produced some results on the
screen, and we mused over why. But in one case, we got the
mouse to be useful while a program was running and we

116



G15 PMN PROGRAMMING FOR KIDS

could use it to display star-like fields here and there.

In this part, Part C, we will have more such 'C' for
"Communication" in which a program, while it is running,
makes use of keyboard input and also mouse input. Perhaps
the 'C' is also for "Contact", at least a contact with
ourselves--you with yourself--while you use the PC. That's
a very important form of contact. When you are good at
having contact with your own thoughts and ideas and images
then you become better at having contact with other people
as well.

Of course, we can also wire the computers up--or use a
radio wave, wireless communication or something like that,
and via the computers connect to other people. That makes
sense when there are things that ought to happen very fast
and involves perhaps such as money, booking a place, or
voting. But as an alternative to actual meeting with real
other people, do we really want a machine as filter, to
stand between us?

I can think of only one reason why we might want a
machine to filter the communication--and that's when we
don't want any much communication. But when we do want
communication, going through a machine is a poor
substitute.

Pardon all these long words, if you are--as the title of
this book suggests--a child, reading this. But I think you
know what I'm talking about: that real life has so much
more to offer than machines, and we need to talk about
this often, even when we learn how to handle machines.

Can you bear over with some more long words? The world
is 'analog', life is 'analog'--like waves reflecting the
sparkling Sun a mild afternoon--and communication is also
analog. The computer is digital--either/or. Right?

And, yet more long words: the real life meeting between
friends, between people who chat together, walk together,
dance together, cook together, think together, run
together, feel things together, talk over life together--
that is all something 'immediate'--a word which means both
that it happens just now, and that it happens without
anything in between. You know the word? It's immediate!
--that means, "It is now!". But it also can mean: it isn't

117



G15 PMN PROGRAMMING FOR KIDS

'mediated'--in other words, there is nothing that is used
as a bridge, as a mediator, as a wire, as a filter. So,
the 'immediate' stands together with 'the analog'. A
computer is always digital and always 'mediate'. That's a
heavy way of putting it, but if you remember it, you will
know something of the limitations of the computer, no
matter how people talk about it. They may say it is 'So
immediate! Real contact! Absolutely analog and all!' but
then you can think, "That's just hype! The real world,
real life, is immediate and analogue and the computer is
just a little part of it."

So, we can write "analogue" as well as "analog"--both
ways of writing this word is correct.

Now, when you make a program, and you then start up the
program and somehow communicates with yourself--that is a
blending between the analog and the digital, because you
are analog and you are now and immediate and then you are
using the digital to focus, to concentrate--to meditate,
if you like. So you may feel an intensity through that, a
calmness--that's very useful when you then turn off the
machines and go out and meet real people.

Let's now do some hardcore work with the PC. To begin with
I'm going to produce a list, and there is no use in trying
to remember the whole list--I don't know of any who do--
but you may want to know where it is and what it is all
about, when you're going to program later on.

I think that in one of the previous parts, I briefly
mentioned that capital letter "A" is, when inside the PC,
stored as a number, and that number is 65. The small "a"
has--paradoxically--a larger number, 97. (There's always
32 between small and capitals in the English alphabet when
stored on the computer in the normal way.) The list of all
the numbers for all the normal letters and digits and more
such on the keyboard, which sort of underlies most or all
the work with the programming language, is called--for
historical reasons--"ASCII". I think the "A" is for
"American" and the "C" is for "Characters". It doesn't
really matter so much--that's the name of this list, no
matter what they meant to call it. (Or the "C" might have

118



G15 PMN PROGRAMMING FOR KIDS
been for "Commitee", for all I know.) In fact, it's
better not to know what it originally meant. For this is

what it is:

ASCII (which you may pronounce 'ask-key'):

32 45 - 58 : 71 G 84 T 97 a 110 n 123 {
33! 46 . 59 ; 72 H 85U 98b 111 o 124 |
34" 47/ 60< 73 I 8 V 99 c 112 p 125}
35 4 48 0 61 = 743 87 W 100d 113 g 126 ~
36 $ 491 62> 75K 88X 10l e 114 r
37 % 502 63 ? 76L 89 Y 102 f 115 s
38 & 513 64@ 77M 902z 103 g 116 t
39 ' 524 65A 78N 91 [ 104 h 117 u
40 (535 66B 790 92\ 105 i 118 v
41) 546 67C 80P 93] 106 j 119 w
42 * 557 68D 81 Q 94 "~ 107 k 120 x
43 + 568 69 E 82R 95 1081 121y
44 , 579 70 F 83 S 96 109 m 122 z

Full list of special numbers: 32 is blank, 13 is <ENTER>,
sometimes also 10, 0 is NIL, 8 is <BACKSP>, 9 is <TABL>,
27 is <ESC>. The range 0..126 is called "7-bit Ascii".
"Visible 7-bit Ascii" is 32..126 range. G15 PMN has the
arrow-or-flower-like symbol at position 37 (not percent).
The 'robotfont' of G15 PMN has the 'z' inversed.

So this is just a list of numbers that puts each thingy
on the keyboard to one of the numbers between 32 and 126.
That is to say, all the visible thingies, and blank, are
given such numbers. All the other keys, <BACKSP> and
<TABL> and <HOME> and <PGUP> and all those either have
numbers smaller than 32 or larger than the ASCII range;
there is no ASCII list that tells exactly which number
such as the <F12> function key should have, for instance.
But in G15 PMN they all have exact numbers, and we'll soon
see how we can find out all we need about these numbers.
The ASCII list is a little bit elegant, is it not?
Perhaps a little confusing is: why does the digits, such
as 'l', have their own numbers, such as '49'? Why can't
the digits be their own numbers--0 for 0, 1 for 1 and so
on? The answer is that all the numbers under 32 had roles,

119



G15 PMN PROGRAMMING FOR KIDS

early on, in computing. Now only some of them have roles:
<TABL> key is given 9, <BACKSP> is given 8, <ENTER> is
given 13, though 10 is sometimes used together with this,
or instead of, in texts. <ESC> button is 27. And 0 we use
in G15 PMN to keep cards empty--empty even of space! It is
what we call 'nil' or 'the nilchar'. When we press <CTR>
together with a letter from B and up to Z we will usually
produce numbers from 2 and up to 26, by the way.

So '32' is space. A way to remember that--you do
perhaps remember the phrase "32-bit", as when we say:
the G15 PMN computer is a "32-bit computer". You don't
have to understand it exactly at first, but that's a
phrase you've met already, isn't it? So 32-bit--that makes
the number 32 big. And the biggest button on the keyboard?
That's 32 in the ASCII table.

Just get used to the idea that the numbers between 33
and 126 are all visible signs on the keyboard, including
the digits. And we'll look into how we can make use of
such lists and how you can find out these numbers even
without having such a list at hand. And this we can use
next when we make a program that uses the keyboard and
shows something on the screen each time we click on the
keyboard--while the program is running. A most useful
thing to know, for instance if you wish to build games.

All right, now that you have the list, right here at the
beginning of Part C in this book, we might as well also
show some quick way of going from a number to a sign and
from a keypress on the keyboard to a number. All this can
happen fast and fairly effortlessly by using the terminal
you by now know so well--the TF (Third Foundation)
terminal, that is such a essential thing in the G15 PMN
world, in addition to the cards.

In fact, almost nothing is easier than to show what
number--in the list you now know is called "ASCII".
Just start up the terminal, and type

ki

and as you press <ENTER> or lineshift or what we call it,
you'll notice the amazing thing that the usual rectangle,
or 'text marker' as we also call it, has disappeared. The

120



G15 PMN PROGRAMMING FOR KIDS

PC appears to be waiting. Indeed, it is waiting. It is
waiting for a key to be pressed--or 'inputted'. So to
remember 'ki', you might remember "Keyboard Input". Press
any key, like A, or even lineshift itself, and then type
nn
and you'll get it! So you can then check that 1 is 49, and
* is 42--as two examples. Or that by a press on <BACKSP>,
we get up 8, or a press on <TABL>, we get up 9. You can
even get very much higher than the maximum of 126 when you
press exotic keys like <F12> and <PGUP>. Type 'ki' many
times (or make a loop if you really want to explore).

So that's one way--from keyboard to numbers. Suppose we
have some numbers and we wonder what they are in the list
and we don't have the list at hand. Let's say, 34 and 94.
All right, then you could type something like this:

“ab

s3
This just creates a little text--"ab" to start with--and
you store the warp to the text by using 's3'. If you
recall, sl, s2, s3 and up to s9, sx stores in il, i2, i3
and up to i9, ix. So we can show our little text by this:

i3

pp
In other then, to see what 34 works out to be, and what 94
works out to be, we will modify the text. In the first
position of a text is its length (in this case, 2). In the
next position is the first letter or digit or whatever it
is. So you could use the 'ad' command to add 1. But adding
1 is a very common thing to do so there's an easy simple
command for it--'up'. And adding 2, to get to the letter
after that, is also very easy--that's 'u2'! So try this
stuff and you'll at once get to know what 34 and 94 are:

34

i3

up

kl

94

i3

u2

121



G15 PMN PROGRAMMING FOR KIDS

k1l
You remember that 'kl' is to put stuff into something? The
'lk' is to look it up again, 'kl' is the same letters in
the opposite way. Now, then, you have modified the text
you have the warp to in i3. Let's show it!

i3

pp
And now the text is completely different. What comes out
now is this, isn't it: "”°

So 34 is the double-quote, the ", and 94 is ". And the
terminal showed you just what's in the list earlier in the
chapter. (I often call '"' for 'the hat'.)

Now imagine a programming language in which there is no
such thing as a 'terminal'. You always have to store a
program somewhere, then leave that area where you can type
it in, and start up the whole program, and only then,
after all these steps, do you get the PC to do something--
but only something--and then the PC won't do more before
you next time store something and repeat all the steps.
Instead, here you have a willing terminal in which you can
not only do one thing, but a number of things--try them
out, informally, easy, gaily we might say, and you may or
may not have a big program you've made loaded in. If you
do have it loaded in, you can do such checks also on bits
and pieces of your program and so fine-tune it, get it to
be completely right. So you see how important it is with
such a terminal. It's hard to believe that most of the
programming languages of the 20th century didn't have any
such option, but it's just so.

Remember that which we have talked about several chapters
ago--namely that there always are many ways of doing
something? Well, here's another way putting something,
let's again say 94, to position 2, of the text you point
to in i3:

94

2

i3

ya
And the 'ya' is exactly that which we used with arrays, at

122



G15 PMN PROGRAMMING FOR KIDS

the end of the previous part--'ay' for look-up in arrays,
and 'ya' to 'yapp' something new into them!

Now that means, doesn't it, that a text, like "ab or, as
we can also write it, &ab& (since we can use " when there
are no blanks in a quote), is a form of array. And that
makes sense, doesn't it? It is one letter after another,
and these letters, in the way we now know is called ASCII,
are all stored as numbers.

In any case, let's make a program that 'listens' to the
keyboard and does something. Ideally, these example
programs should sometimes combine things from earlier
chapters, so that we get to repeat stuff we've already
been through. Remember the stuff about warps to functions?
Where we run a function only by having some kind of fancy
warp number, that we fetched with 'ff',--and we used 'pf’
to perform that function? Why don't we combine something
about keyboard and something about running small programs
via an array of warps to them. This is a few more cards
than that which we are used to, perhaps, but it sort of
combines things we've already been through--including
earlier in this chapter--and I think we can handle this
without introducing more commands--or perhaps, if we do,
just one or two.

If, then, you could be so considerate that you cleanse
the cards, as you by now probably have done several times,
that start at i:1, so that we have a whole bunch of them
ready for us, then we'll work through a couple of cards.
When we then start the program, and press some of the many
possible keys on the keyboard, we'll get a sprinkling of
some messages here and there. It will almost feel like the
beginning of a game. It's certainly a huge step forward
when it comes to making a program that we can somehow
'connect' to!

And I'm going to promise you, that if you follow through
all the chapters in this book, you'll see that eventually,
in one way or another, we'll 'grow' a little game with
scores and all out of the cards we type in next! We'll
work out such a game before the book is complete. And you
may also find, when done with this book, that you have

123



G15 PMN PROGRAMMING FOR KIDS

enough programming power that you can take up some
existing G15 PMN games and make new games out of them; or
begin projects with entirely new games or other sorts of
programs. Having said as much, let's also say that there's
no harm having a look into upcoming volumes in this series
before you declare youself a Pro Ultra in G15 PMN :)

So, let's make four rather simple functions. Each of them
puts a nice little text on the screen just where the mouse
is. They are almost identical except for the text, so you
can do a <CTR>-C and press <ENTER> and then go to the next
card by <PGDN> and do <CTR>-T there to put it there. Then
you edit that card and save that and do a <CTR>-S and go
on to produce one card after another really easily.

Under the motto, "there are always more ways to do
anything", we could separate the text parts out into own
functions, and put four more snappier functions together.
But sometimes it is more simple to expand it a little bit.

After the four functions we list them up in an array.
I'll explain how it works--we have before hinted that
there is a snappier way to make short arrays, and already
here we are doing it!

The program shows four bright little words in B9font
when you press a, b, ¢, d (all lowercase).

If you click anything other than those four--Ascii 97
and up--program exits. To check the numbers we have here
a new word, 'iswithin'--I'll explain all new bits after
the program. The program starts automatically--that's a
first! It does so by the command 'zz'--also that I'll
explain.

I hope you bear over with the fact that it goes over as
much as 9 cards, but it isn't much typing if you do it
cleverly. And remember this is part of building a game!

So here's i:1l:

ashow= bx.

“Top

md

124



G15 PMN PROGRAMMING FOR KIDS

sh
sh
And i:2:
bshow= bx.

“Yes
md

sh
sh
Here's i:3:
cshow= bx.

md

sh
sh
And i:4:
dshow= bx.

0k
md

sh
sh
Then some variation, some fresh typing, here is i:5:
ourwarps= “bshow
&1234&. ff

“ashow

ff

1 2

ourwarps ourwarps

ya ya
I'll do a really fast explanation here of how we can use
'va' directly after 'ourwarps'. If you leaf back to where

125



G15 PMN PROGRAMMING FOR KIDS

we first did 'ay' and 'ya' we also used 'sz' to tell the
size of an array. But when it is so short that it is just
a handful, we can make a quote--any quote, any content
will do. Here we say &1234& but &wxyz& would do just as
nice. It has length 4. We want an array of length 4. So
we just use a quote! And when we just use a quote, then we
don't have to do 'kl' nor 'lk' stuff at all--again, if you
find that chapter where we first did arrays, we did 'lk' a
lot of times. But with super-small arrays, done as a quote
in this way exactly, we get a snappy way of doing it all!
Now bear over with me if what I just said doesn't make
much sense. We'll do more arrays of both types in this
book and I'll give fresh explations then, and you can also
read back. And when you have slept on something--literally
--for the mind/brain works during night with new learning,
then suddenly things make more sense when you re-read it.
Alright, the i:6 has more of the same stuff that i:5
had:

“cshow “dshow
ff ff

3 4
ourwarps ourwarps
ya ya

So now we have done 'ff' on all the four functions. They
are all listed in our array 'ourwarps'. The 'ff' is, as
you recall, 'find function'. We can do 'pf', or 'perform
function', to run any one. And that we'll do when a key is
pressed. To press 'a' gives Ascii 97 (see the table above)
and so we substract 96 and that means a press of 'a' gives
l. To press 'b', 'c', 'd', gives 2, 3, 4. Anything else
leads to program exit. That exit is done here, in i:7:

gamebit= 1

ce 4
11:10000 iswithin
ki n?

96

su se

126



G15 PMN PROGRAMMING FOR KIDS

SX

ix ex
And on i:8 the loop finishes. The 'activepause' gives a
pause to the PC so that it can work out a few things in
the background after you have pressed a key. The number
'100' means it pauses just a tenth of a second. In that
way, it gets to sort out where the mouse is (possibly it
can do that without the 'activepause' as well--it depends
on just how the G15 PMN PC is made, and this is the way
that works on all of them):

100 ix
ourwarps
ay
pf

activepause lo.

And this tiny content on card i:9 autostarts the program.
You could of course put it together with other stuff on
the previous card, but it is such a big thing--to use
this 'zz'--that I think it makes good sense that we often
have it on a card on its own.

&gamebité&

z2Z
This i:9 means that we don't have to type in the name of
the program to start it after we've loaded it in via 'cc'.

I have promised explanations, and I'll work through all
the cards quickly--but most of it is repetition and is
talked about in earlier chapters, okay?

The card i:1 has 'md' in it. That is a command that we can
remember as "Let's get some Mouse Datal!". On top of stack
are two numbers that talk about left and right side of the
mouse--whether it has been clicked or not. These we just
'shuck' away with 'sh'. Then there is the place on the
screen, what we also can call 'x and y coordinates', to
use a fine long expression. The idea of 'x' and of 'y' is
that these talk about the dots on the screen--what we also

127



G15 PMN PROGRAMMING FOR KIDS

call 'pixels'--and to remember which is horisontal (x) and
which is vertical (y), try writing them in uppercase: X Y.
You see there is only one vertical line there and that's
the bottom part of Y. So Y is vertical!

The 'bx' then shows the little text at that x, y place.
It is small so that we don't go too far to the right when
the mouse is very much to the right. We can put in longer
texts but then we ought to check on the x place, really.

So that's all about i:1l. And i:2, i:3 and i:4 are all
exactly identical except for the text.

On i:5 we make, then, an array--a list of numbers--of a
really short type, only four members. It is called
'ourwarps'. Had it had a hundred thousand members, or
even just 15, we would have used 'sz' and set it up neatly
as in the chapter which discussed arrays in the previous
part. But when it is so short it fits within a quote on a
slender column in a card, then we can do it this way: we
type &....& and inside the & and the & we put in as many
letters or digits or other signs as we want the array to
have members. In this case, the amount is 4.

Having set it up in this snappy way, we can just 'ya'
something into the array and 'ay' it out again, without
having to go through the 'lk' as we did in the chapter
where we first talked about arrays.

All right, so what is it we put into the array? That's
the first function--we quote it--and then we use 'ff'.

We have to quote it, otherwise it will just run. To find
the warp of it, we must look at the name of it, and give
that name to 'ff'. And that's what we do and we put it
into place 1 on the array via 'ya'. That is, the little
function 'ashow', which shows a tiny text on the screen
where the mouse is, is put into place 1.

And so for bshow, cshow and dshow. Exactly identical.
And that, then, covers both i:5 and i:6.

Then, on i:7, we set it all up--under the name 'gamebit'
--because it is a bit of a game!

First 'ce', which is to 'cleanse the entire screen'.

Then there is a loop--here we set it to 1000 repetitions
but usually you'll try it a few times and then press <ESC>
or something to leave it--after all, it isn't a full game

128



G15 PMN PROGRAMMING FOR KIDS

yet!

Then we use the command 'ki' which waits on the key to
be pressed. Suppose it is 'b'. If we look up in our Ascii
table, we find that it has number 98. But when we do a
'su' or ‘'substract' with 96, that means we get the number
2 for b. And so 3 for c, 4 for d, and of course 1 for a.

Any other key should lead to exit of program. So we
check the input with 'iswithin'--'is it within so and so?'

We tell 'iswithin' that we want it to be within 1 and 4.

Then iswithin does it work--though we could do it with
'lt' and 'gt' and such, that we looked at in one of the
earliest chapters in the book (and that is indeed how
'iswithin' is doing it, it is one of the hundreds of very
convenient pleasant words that are part of what we call
'The Third Foundation', all available at the terminal).

In case that iswithin didn't find that it was a, b, c,
or d, then we want it to exit. So we put in 'n?'--which we
have looked at much earlier in the book. It is like a
question,--'is it not so?'. And when it is not so, then
the command 'se' will allow the next simple command, 'ex',
which exists, to run. Otherwise 'se' will jump over it!

One more thing about that card i:6. It stores the 1, 2,
3, or 4, via the command 'sx'. That stuff can then be
found--inside that function--via 'ix'. Remember? The sl
has to do with il, s5 to do with i5, sx to do with ix.
Right?

So ix has the number and keeps the number inside that
function. In the next card, i:8, we again pick that number
up. We now know that the number is right--it isn't out of
'bounds', as we might say. It is 1, 2, 3 or 4. So we can,
without making the PC go bananas, use that number with
'ay' and get something out of 'ourwarps'. And having done
so, we run the warp, we warp to the function--using 'pf'.

As said, we also let the PC relax a little bit, using
the 'activepause'. That's a really good thing whenever the
mouse is being used, also when it is being used together
with the keyboard. It allows the timing to work out.

So 'LL:1000' starts the loop, and 'LO' completes it.

Finally, the i:9, as said, allows us to save some time
when we want to start it up. Instead of having to type

129



G15 PMN PROGRAMMING FOR KIDS

'gamebit' each time, after we have typed

~il

cc
it will start 'gamebit' of its own. That's what the little
command 'zz' is doing, which is usually only done at the
very last card. And it is done outside of any function,
naturally.

On the next card, i:10, it ought to be nothing at all.
Only the 'nilchars', remember? And that tells the PC that
when we reach that card, there is no more needed as for
this program, and it will check whether there is a 'zz'
and so start the program up.

In the robotfont, used in cards, you'll notice that the
'z' letter is as if a mirror of the 'z' in B9font. That is
because we want to use this letter also to show that
something is over, finished--and so the line goes like a
backslash, \, rather than up,--like a dwindling sunset.

With nine cards, that's a bit of typing, and don't let it
depress you whether you have to correct it once or twice
or more before the program works. Remember that rule of
thumb we gave much earlier in the book--the more absurd
the program behaves, the easier it is to correct it!

So, are you getting it to work? When you start it, it will
make the screen completely black. Then you press a, b, c
or d and move the mouse and each time it will show a word,
tiny and optimistic, in the position you have the mouse--
at least within a fair area of the screen. When you then
press eg <ESC>, the program exits. You can then type 'qu'
to leave the terminal safely.

Suppose now we think of some kind of game like this: at
the screen the program puts something or other. If you are
able to both place the mouse at the right position and
press the right key, a, b, ¢, d, then a word will show
there and you'll score some points! Right? And then if we
could let it run e.g. for two minutes so that each person
who tries it gets the same time, we could compare score.
Clearly, that's near to our capacity to do that. How fancy
should we do it? Let's think about it when we go through

130



G15 PMN PROGRAMMING FOR KIDS

more things in this book, and take our time to get it just
right. [In fact, the game became rather different.]

Part C, chapter 2: ANTI-AI AND GET THE PC TO HANDLE TEXTS

I have seen an enormous number of attempts to make
programs, running on a normal computer, that as if are
able to 'answer questions' in natural language. Some are
fancifully made; some, of course, connected to sound
output devices--something which on its own is very easy
to do. But the result? If you ask me, I'd say that every
program that aims as making English language statements
is a stinking program--if programs can, indeed, stink.
Just think of it: here we have our natural, full, living
minds, learning, feeling, thinking, sensing our world,
each other, ourselves, our bodies, and in this world we
have this lovely, rich, naturally evolved language, which
we call "English". Then comes along a bunch of programmers
who probably don't do any much talking to anyone. They
just sit in front of the computer all day and all night
and I expect they rarely wash, and eat just junk-food, and
have never read any philosophy other than, at most, such
that aims putting machines above people. And they analyze
and fine-analyze how sentences are built, grammar and all
sorts of things. They build databases of sentences

131



G15 PMN PROGRAMMING FOR KIDS

extracted from a thousand or a hundred thousand books. And
they are able to get a program to 'answer' questions and
'engage in conversation'.

No, they aren't able to do that. They are able to fake
language, just as illusionists are able to fake Gandalf
magic. They are pretenders, tricksters. And they are
taking away the fun of computing, the fun of programming,
and they are threatening something of the fun of English
by their mockery of English in their socalled 'natural
language computation'--to which they add other phrases,
which again, I would suggest, stink--such as 'machine
learning' and 'artificial intelligence' or 'AI'. It is
perfect nonsense, what these 'natural language
programmers' are doing. They don't care one whit about
what's natural. Their programs are not just clumsy, they
are clumsy to nth degree because they make the computer
pretend that it isn't a computer anymore, but something
almost human or better than the human being--and they
have never meditated, never enquired into what lies
beyond memory and beyond technique, they have never had
any sense of love nor of intuition or communion or actual
communication with anyone in their whole professional
life.

Yet companies, all over the planet, and governments,
too, are hiring people to program computers in this
horrible way. Do you react? Do you walk with a poster that
says, "Anti-AI"? Some do. Most don't care--they say that
'these developments are inevitable, they can't be fought'.
Of course they can be fought. It's just to point out how
horrific it is with spoiling natural language by trying to
get computers to pretend that they have what they have
not, namely mind.

And to avoid using such programs, if they come on the
scene, somehow.

And to switch off those news channels that speak happily
about such illusionist programmes as "AI".

So, you see, there's a spirit of the rebel here, right
in this book, in this writer: and all the more important,
then, that this writer also has decided to be entirely
constructive--and come up with something that stimulates

132



G15 PMN PROGRAMMING FOR KIDS

the human mind and that allows computers to be programmed,
also the computers that are parts of robots.

When we ditch the idea of "Artificial Intelligence" then
we say that, instead, we can have something else, that
doesn't pretend to have mind, but that can express some-
thing "mind-like"--and this "mind-like" thing comes from
the programmer, that is, from you and me. And there is no
mimicking of mind, no mimicking of learning. It is a
first-hand thing. We can say that we express our mind or
mentality through a certain type of program, when it is
so that it steers robots to do types of boring, repetitive
work that we don't want to burden humans with. Instead of
talking of 'machine learning'--which is a paradox, because
a machine is pr definition stiff in its roots, whereas
learning requires something alive--we can say that we
'entrain' the robot to do certain things. You see how
language is important--neither to try to mimick language
inside a program, nor put wrong labels on the programming
we do, and to rebel against others who couldn't are less.
Because we have to care. We have to protect our minds from
destruction by the types of attitudes some people may
harbour, attitudes where they hate life so much that they
want to put machines above humans. And even if it is
attachs a lot of money to joining with gangs of the type
that hypes "AI", we might stay noncorrupt, I feel, and
reject this type of false money.

So, when I do robot programming, I use a set of ideas
that I summarize under the phrase "First-hand Computerised
Mentality" or FCM. It is first-hand--not a commitee but
something done by a responsible person, directly. It
involves expressing our minds, our real minds, so that we
get a bit of 'computerised mentality'--which is a much
milder phrase than 'artificial intelligence'--it simply
says that the programmer has expressed something a bit
like mind into some programs, usually as part of a robot.
And it is a required part of FCM that we are making the
computers, also if they are part of robots, humble and
modest in their claims about what they can do. So FCM
belongs to the future and is scientific, whereas "AI" is
merely the false hopes of advertisement companies and

133



G15 PMN PROGRAMMING FOR KIDS

bosses of bogus universities and misguided giant companies
and other people who have read some science fiction and
mistaken it for a recipe for how to program.

FCM makes sense--in all future--a future in which we as
humans handle technology in a first-hand way and do not
let technology over-power us. FCM means that we humans are
in control and that, as such, living human minds are in
control, and that we do not make an 'insect race' of
robots that pompeously go around claiming things that are
patently false.

FCM can be used for autopiloting a bus within a tunnel
built just for an FCM-steered bus--but we do not, when we
see the greater perspectives, put a bus or a car steered
by computers loose on streets where there are living
people or where there are cars driven by living people:
because then all sorts of things can happen that computers
can't be programmed to tackle aforehand. FCM means care.

And when you know all this about FCM, you can also know:
there is a lot of functions built into what we call the
"terminal” or "The Third Foundation terminal" or the "TF
terminal" that enables you to do FCM programming--and also
robot programming. Yes, the pathway is right there. Though
getting really into it is a topic we only deal with
briefly in this Art of Thinking series (in an upcoming
volume), and more in other books to come, everything you
learn now can also be put into FCM robot programming.

And once we have spoken out against "AI" and against
trying to make programs construct English sentences, we
also see why the playful little program "Eliza", which is
part of one of the menues of the G15 PMN platform, or
"operating system", if we wish,--clearly says that it is
"not AI". The program provides some pre-stored responses
in a rather coincidental way, just to stimulate your own
thinking.

So that was the philosophy lesson of today! But how do we,
once we have understood that we don't want programs to
mimick real mind, handle long texts anyway? For up until
the previous chapter, every quote we looked at was a tiny
one--at most a dozen letters or so. Are there easy enough

134



G15 PMN PROGRAMMING FOR KIDS

ways of getting G15 PMN to come with long sentences on

the screen? And to accept also much typing on the keyboard
while a program is running? For sure. Clearly. And we're
going to look into it next.

We can look into it also via the motivation of making a
game. For even the simplest of games deserve to have some
explanations to begin with. It creates what writers call
'an atmosphere'. Perhaps also the game wishes to ask a
question, such as about how fast the game is going to be
played--a number can be typed in. That kind of stuff.

Right, so here we go. As long as we only work with some or
a dozen cards or so at a time, it's wonderful exercise in
programming to do some re-typing, so I expect the best
idea is that we do some 'card cleasning' this time also--
even if the game we will work out as the book is closing
will use something of the cards we had in the previous
chapter. (How to cleanse cards is described in one of the
first chapters.)

First, to quote a long sentence when we are going to
type it into a card with only slim column means that we
must write it a little bit funny--we must let the text
go over many columns, and the words will be divided up
strangely when they are at the cards. But when the program
is showing, the sentences will be straightened out and
appear completely normal, the way you want it, on the
screen.

To make a long quote, or a long text, the way G15 PMN
does it, is to use this type of word:

longtxt*
and then the text begins on the next line in the same
column. It can go over several columns--over a handful of
cards if you have to--and then, after the last line:
*txtcomplete
That will have much the same result as to write something
like &Friday& in that something is left on the stack. This
will be a 'warp', as we say, to the text. (The clever
reader may wonder--what if the text has any of these
phrases inside itself--how does that work out? But in the
case of the first one, 'longtxt*', that's fine, just put

135



G15 PMN PROGRAMMING FOR KIDS

it in; and in the case of the final one, '*txtcomplete’,
this will work out in one way or another as well. It's
only when the line begins with '*txtcomplete' that the
text will complete. But it is easy to add a quote that
contains this text, eg by “*txtcomplete, or write one
letter different and change it the instant after the whole
long quote is complete.)

So how about making some kind of sentence that more or
less can be a first one in our upcoming game? Try this, in
your i:1l card. We'll make a word, 'gametextl', where we
store the quote, after we've made it, using 'kl'. This is
very similar to how we deal with arrays in the previous
part, by the way, apart from the 'longtxt*' stuff and the
word 'cliptrail', which I explain in a moment:

gametextl= cliptrail

A
.

longtxt*

Welcome to the

game of giggl

igaggli! Great

fun to come! gametextl

*txtcomplete kl
So you see how it goes. First we make 'gametextl' and we
make it to be the '".' stuff. Remember that the hat, ~,
also looks like a 'v' as in 'Variable' upside-down? And so
this is a place where we can put any number, any warp. And
the warp we put there is to this text, in between longtxt*
and *txtcomplete. It is a sentence or two, almost a full
screen-length, if we use our normal-sized fonts to show
it. We put in 'cliptrail' and this does the following: it
makes sure that there are no blanks at the end of the
line. Such blanks tend to get in the way when we do much
heavy work with long sentences and switch fonts. They can,
for instance, hang onto lines that are so long that they
almost touch the right side of the screen. And the PC
'objects' when stuff--even blanks--get over the edge. It's
a bit simplistic that way. So a rule of thumb is, just
throw in a 'cliptrail' after you have used a *txtcomplete,
unless you really want those blanks for something.

136



G15 PMN PROGRAMMING FOR KIDS

Then we use 'kl' after 'gametextl' at the last two lines
of the card. You remember that 'kl' has the same two
letters as 'lk', but whereas 'lk' is to 'look up' what's
there, 'kl' puts stuff in there. Right? So the quote, the
long nice quote that could start a game, is stored there.

Anything else we should say about this? Oh yes,--one
thing. When we use *longtext then it expects you to use
the full length of the slim column,--that is to say, 14
digits or letters or signs of whatever kind you prefer.
But how do you get to know whether you're at the 14th
position, and you are working on the left column? Simple!

Method 1: click <CTR>-R and it will go to position 16.
So there should be one full blank between the last letter
in that column and the first letter of the next.

Method 2: click <CTR>-W and go to menu mode and click on
the place you're curious about and it will tell you both
the position number, the line number, and even the Ascii
number of whatever is there! (So that's why, if you have
ever wondered, you always see a '37' briefly arise when
you start a program by a mouse-click on it--for 37 is the
startup sign in the Ascii list, the flower or arrow-like
sign you know).

Let's add another line, this time with a question, and
we'll use some new words, among others 'prt', to show
these things and to get something to be typed at the
keyboard by the game-player as well.
This, then, is i:2 (I suppose you now have saved the
other card to i:1):
gametext2= cliptrail

A
.

longtxt*

How fast do yo

u want to play

? 3=fast, 2=me

dium, l=slow: gametext?2

*txtcomplete kl
Since you by now know all about <CTR>-C and so on, when
making new cards, I assume that it's unnecessary to point
out that since this i:2 is so similar--except for the

137



G15 PMN PROGRAMMING FOR KIDS

text--to i:1, the fastest way of making it is to go to
card i:1, do <CTR>-C then <ENTER>, then <PGDN> to i:2,
then <CTR>-T and <SPACE> to put it in there. Then fix on
it and save it by <CTR>-S as usual.

By the way--in case you are writing the text inside the
'longtxt*'..'*txtcomplete' thingy in the right column, the
right column is exactly as long as you want it to be for
this to work out--fourteen signs.

Let's hurry up and put all this to use. To print such a
line-long text, we can use such as 'bx', or 'rp', and then
we use a small enough x, such as 10 or 50, rather than a
big x, such as 900 or 1000, which means that the command
will put it to the left of the screen. (Remember we give
some of these commands an 'x' and a 'y', the position on
the horisontal line and on the vertical line? And that a
way to remember the sequence is that 'x' is before 'y' in
the alphabet, and capital 'Y' has a vertical line in it,
so the vertical position is the second of the two.)

But we'll make it faster this time, and use 'prt'. The
second is a question, and for that we can use 'prtinput'.
Before using these, it's a good routine to use 'prtclr',
which clears the 'prt' routines so that we are sure that
they begin on the top line of the screen. These are made
so that they are easy to use. Just look here, at i:3:

prelude= gametext2
ce 1k
prtclr prt
gametextl

1k prtinput
prt tx.

You see? The 'ce' is the command we now know so well to
clear the screen. The 'prtclr' we have just talked about--
good to do, but not necessary always. Then we fetch the
long quote, we write 'gametextl' then 'lk'. So here, for
long quotes as with big arrays, remember to use the 'lk’',
right after the place where the warp or pointer or
whatever you call it is stored. Then 'prt'. As simple as
that. This will show it in robotfont. If you wish it to

138



G15 PMN PROGRAMMING FOR KIDS

show in b9font, just put in the word 'lush' before the
first 'prt'.

Then the second line, the question about how fast the
game is going to run. 'gametext2' then 'lk' then 'prt'.
Pretty simple, huh?

Then we use 'prtinput'. Here anything can be typed,
really, but if the game-player behaves well, she'll put in
the number 1, 2 or 3. That we don't look at here, we just
wanted to see how to get text out and text or numbers in,
suitable for a game-start. If you like, put in this as the
i:4 card, to make it start by itself:

&preludes&

zz
Then try it--go into the TF terminal, type 'il' then 'cc'.
In case it doesn't work, go back to the cards and reread
them closely. Some people thought it was fun to call this
type of thing 'debugging' because they felt it was right
to call a mistake in a program for a 'bug'--but once
you've heard that joke, it isn't as funny the second time,
and not at all the third time. And no writer in English
talks of spelling issues and such as 'bugs'. It is bad
language. It's better to say, 'it has got to be corrected'
and not call up the image of irritating insects. So in
Gl5 PMN we say 'program correction'. And that's an art.

When you get the program to work, the two lines will
come neatly on the screen, starting on top:

Welcome to the game of giggligaggli! Great fun to come!

How fast do you want to play? 3=fast, 2=medium, l=slow:

And at the third line, you can type in something. When you
press lineshift, the program exits. You can then check
that we did everything right with the stack in the way we
talked about in a previus part--type 'f' then lineshift,
then type 'nn', and it should say: 123456.

Before we finish all this, I should mention a couple of
'useful things' to know.

===>USEFUL THING TO KNOW: TO SEE WHETHER A WORD IS IN USE

When you are making new functions of three and more
letters, then you want to be sure that they haven't

139



G15 PMN PROGRAMMING FOR KIDS

already been given a role in the Third Foundation. And
this is how you check it. Let's check, for instance, if
the word 'prelude' has already been used--it hasn't--but
just to be sure, I checked it this way myself before I
used the word just above in this chapter. This way:
“prelude
exists
And it will, in a somewhat funny way (I hope you think)
tell you whether it has been used or not. If not, go ahead
and use it. (To check two-letter commands, see the next
'useful thing' in this chapter.)

===>USEFUL THING TO KNOW: INFO ABOUT A TWO-LETTER COMMAND
This also works with one-letter commands, by the way. So
let's see we want to see something of how the word 'ad',
which adds two numbers and produces a new number, their
sum, on the stack, is made. Then be prepared for something
which is very cryptic-looking, until you get used to
looking at it. It is the underlaying way of commenting and
the underlaying way of making PMN in what is called
'Yogabdorg G15 assembly'--to use a long and technical
phrase ('assembly' meaning that it is nearest the machine,
the electronics, the machine code). So here's how:
Step 1. Type this word and press lineshift:
scan
Step 2. Type a blank and then ad: and press lineshift:
ad:
(Be sure you type a blank before the two-letter command
or it will find every word that ends with 'ad:' instead)
Step 3. The way we normally start the terminal, it has
all its stuff on the F-disk, beginning with card f1l. So
type this and press lineshift:
f1
Step 4. Type any amount of cards that surely is bigger
than what you need, but not so big it takes up much
time. Type this, and press lineshift:
3333
Step 5. It will then search it and when it finds it,
type this and press <ENTER>
car

140



G15 PMN PROGRAMMING FOR KIDS

and you'll get up that rather cryptic stuff. But you'll
see that it talks about a, b => c, meaning that it reads
two numbers and produces one number. It will also say
something about addition. To view more cards, press
<SPACE>, to quit listing more cards, press 'q'.

Step 6. In case you think there are more places where
this stuff you have just searched for can be found,

type 'mmm' and it will try a search for the next place.

===>USEFUL THING TO KNOW: INFO ABOUT FUNCTION DEFINITIONS
We say 'function definition' usually when we talk of
functions we make via a '=' and which have length at least
3 (it must begin with a letter but it can have digits
inside it).

What you do is to use the 'scan' function as explained
in the 'useful thing' just above, only that you type,
for instance,

iswithin=
when you want to search up how 'iswithin' is made.

That's all! You can even use the 'scan' function to look
up words in texts that are for B9edit. But then you type
'more' instead of 'car' to view the text. And when you
want to repeat the search in a text for B9edit, type
four m's instead of three m's: 'mmmm' is the command then.

All right. Whether you need these 'useful things' right
now or later, it is good to know that they exist. In any
case, let's move now towards making a game even more. We
have to have some way of showing something neat on the
screen and we should also get to talk about the form of
arrays called 'matrices'. That's not complicated but we
need to get through it to have the ground-learning we need
in G15 PMN. So why not combine the two?--and make a little
matrix in order to show an outline of a spaceship or
something suitable for a little game. In addition, we
haven't made a program that goes to the disk cards and
picks some stuff out of them. That, too, we can put into
the next chapter--meaning that we can sketch the spaceship
in a card and get the program to read it from it. That's
more or less how games like TexasStars have been made--

141



G15 PMN PROGRAMMING FOR KIDS

only that these use a somewhat bigger matrix that we are
going to use, and a few two-letter commands to show them
real fast. The principle is the same!

Part C, chapter 3: OUTLINE OF A SPACESHIP IN A MATRIX

Again I ask: how is it going with your programming? Are we
still talking together? Is this book, if you have been so
kind as to work through all the chapters up until here,
still a 'friendly' book? Or have the promises of it being
simple, at least fairly simple, most of the places, not
been upheld? I have looked at the earlier chapters with an

142



G15 PMN PROGRAMMING FOR KIDS

earnest willingness to see it as if for the first time,
and I think that some parts are a bit challenging--and
sometimes the words and the sentences have got too
complicated to be fully the childlike flow of thinking
that I want it to be. Yet, all in all, it's good with a
little bit of challenges and a book doesn't run away

from you, does it? You can come back to it and it may have
more treasures for you at a later reading, when there are
some challenges in it.

We're going to look into matrices and this is stuff out
of which science fiction can be made--and yet it is really
simple. First, let's bring in a quote--the only quote from
that thinker that I remember, and then only faintly--from
19th century writer C.S. Pierce. He was talking about this
thing called 'dimensions'. When you have an array, or a
line, a series of numbers one after another, that's in a
way 'one dimension'. But when you put them up so you have
both rows and columns, that's 'two dimensions'. And when
you open your eyes to the world around you, then, if you
wish to measure the size of such as a box, you need not
only its width and breadth but also its height--so that's
'three dimensions'.

So this guy Pierce pointed out that the jump from one to
two dimensions is really a huge one, because, as he said,
you can get such as a triangle drawn up in two dimensions,
and that's a kind of relationship you simply don't get
with just one dimensions.

Right? So you put dots one after another--no triangle
there! But once you can have both X and Y, both a width
and a breadth--or width and height, if you prefer--once
you have two dimensions, you can put something near two
other points but not quite on the same line. So we can
think about relationships in pretty complicated ways, draw
them up, once we have two dimensions. So Pierce suggested
that the jump from one to two dimensions is one of the
biggest jumps there is--and much bigger than when we go,
for instance, from two to three dimensions.

Let's think over this for a moment. How do we see the
world in front of us with our two eyes? Each eye get a
slightly different impression. And this impression is in

143



G15 PMN PROGRAMMING FOR KIDS

movement, in all sorts of ways--also because we always
move our eyes at least a little bit. So let's imagine we
made a kind of matrix of numbers of colors for one eye,
and then a matrix of numbers of colors for the other eye,
--one number pr color 'dot' or 'neuron' or what we call it
--then these numbers have to change all the time to
capture the sense of movement. We have two matrices, but
there is no rule that says we can't make one grand matrix
out of those two matrices--put them beside one another in
some fashion.

On a computer, then, we would not be able to change the
numbers 'all the time'. They could change, perhaps, 25
times a second. (When people want to use a computer to
give an illusion of movement, they program it to change a
picture that fast, or at least much faster than just a
tenth a second--but when illusions are made via a computer
they may create a sleepiness or drowsiness in the mind, so
that's an approach at least this writer suggests should be
avoided, as a rule of thumb.)

Alright, so a matrix--maybe big, and with big numbers--
that changes many times a second: that could have
something to do with three dimensions in movement, even
though we have just two dimensions here. And one can work
with this idea to get feelings of even more dimensions.

So how do you use a matrix to get more effects than just
pictures in movement? How does a robot, when it has been
programmed with what we call 'FCM matrices', put things in
matrices in order to do something that to us makes sense?

Just to give you an idea how it could be done: let all
the bits from a camera attach to just some columns. Then,
add some rows of big numbers of how these bits fit
together--for instance, are they circular? Squarish? Much
like a horisontal line? Or wavish? Or a combination?

So we add lots of such numbers after some functions
'crunch' the numbers in the first rows.

Then add numbers for the sorts of things that the robot
might 'expect' to have in its little world--books, or, if
it makes some food, perhaps the shapes of stuff it might
come across.

144



G15 PMN PROGRAMMING FOR KIDS

Then add numbers for how well the expected shapes fit
with, or match with, the numbers that somehow came from
the camera.

You follow? By simply adding more and more rows and
having a cleverly made program around it, we can use a
huge matrix for just about everything that the robot might
expect to work with, and also how it should work with it.
Perhaps you get the idea now--or perhaps you should work a
little with matrices in this and upcoming chapters and
then re-read this bit, to understand more of FCM and more
of matrices.

But if you do understand it--at least a little bit--then
you may also understand how some writers, not just of
science fiction, but also when trying to understand cosmos
as it is--the universe, you know--have suggested that, in
some way or another, 'the universe is a matrix'. That's
not very different from what the ancient hellenes--the
ancient Greek--were saying when they said, 'the world is
made of numbers'. If we then add, 'numbers in movement',
and get a sense of how programs might be part of it, we do
have some kind of idea of cosmos that has to do with what
this writer calls 'Super-Model Theory'. A 'super-model',
then, is a kind of matrix or a bit of a matrix, with some
programs of some sort--but also with some liveliness that
a computer (on its own) never can have. Amazingly, we can,
using a programming language, get a hint of something of
what a computer can't do--and will get a glimpse of that
hint in an upcoming chapter, in between the other things
we'll do there to get the game completed--the keyword is
the name of German thinker named Kurt Goedel, who did some
work early in the 20th century about just this--long
before the computers came about.

Now to a bit of the game graphics. We want to have some
sort of simplistic-looking spaceship of sorts. It should
move in a certain way, and when it moves in one direction,
then, if you can 'catch it' with your mouse and at the
same time click the right letter, you'll get some score,
somehow. We'll work it out.

But how are we going to draw the spaceship? Like this:

145



G15 PMN PROGRAMMING FOR KIDS

go into a card and make a drawing, sort of, with the
stars--the * or 'asterix' sign--and keep it blank where
you don't have the stars. Here's a bit what I have in
mind, and this time I haven't bothered to divide it up in
two columns, so that it is easier to get at how it will
look when we re-draw it on the screen by tiny dots or what
we call 'pixels'. So save something like this to a card.
Let's see, how about j:1? So that we can keep the program
in i:1? Then the program in i:1 and up will read of that
card. So something like this is what you can store to j:1l:

* * %% *
* * %% *

* * k% *

And try to keep it rather in the middle of the card, okay?
It's easier to make the program work out neatly that way.
So, when we read in this card inside a program, we're
going to convert every space there to '0' and every star
there to '255'. The zero means black, and the 255 means
bright green on the screen. Remember we used 255 as the
maximum intensity when we made a star-like field while

moving the mouse, early in the book? So 0..255 is the
'range', as we say, of the brightness on the screen--we
also call that the 'tones' of the screen.

In this part we listed up all the socalled codes, or
'Ascii' codes, or numbers, for each of the signs on the
keyboard. We can consult it (or we can switch to menu
mode by <CTR>-W and click on the various parts of our
drawing by stars and blanks), and then we find that the
star symbol has number 42, and the blank, the space, has
number 32.

Alright. There is a way to read a card inside G15 PMN
which is called 'rr'--you can remember it as 'Read a caRd'
--or, if you like to use a more complicated word for card
(but which means much the same), 'Read Record'.

This expects us to tell which disk and which card, and

146



G15 PMN PROGRAMMING FOR KIDS

it expects us to use numbers also for the disk. The
particular numbers 'rr' should have are simply the place
in the alphabet (one for A and so on). Whenever you see
anything in G15 PMN that wants a 'disk number',6 it is a=1,
b=2, c¢=3, and so on, including i=9, j=10, k=11, 1=12. In
other words 'disk number' is, then, usually 3 to 12, and
has nothing to do with the Ascii list.

When 'rr' reads something, it has got to put it
somewhere. For that, there is a place that we can call the
'load card', and we find it by the command 'lc'.

When we are going to make a game with a flying spaceship
or something like that, we want the ship to move around as
fast as can be. When we make the program go to the cards,
that's typically a thing that takes more time, perhaps
much more time, than when it is inside an array or
something like that.

So, then, what we want to do, to check how our spaceship
looks, is to read in the card by 'rr', change all the
numbers into 0 and 255 and put them in an array or
something--and since it has rows and columns it is the
array we call a 'matrix'--and then we get the program to
show that matrix as some dots on the screen anywhere where
we like it. Do you think we can do all that in this
chapter? I think so!

For those of you who are young and struggling to learn a
certain new field, an area of knowledge--please don't be
tempted to rush to a conclusion along the lines that,
"This ain't my cup of tea." I'm not saying every field of
discipline and knowledge is for everyone: but don't make
any haste in forming such conclusions. Rather, consider
this: that every field is, in a way, a language of its
own,--a culture,--a kind of 'world context' or even 'way
of experiencing life'. It takes time to get into it,
whether that time is spent during kindergarten age or a
little later or much later. It is a question of letting
the seasons and the years make something, a field of
knowledge or discipline, rather melt with your being--not
just so you can 'think about it', but rather so that you
can 'think it'. And not just so that you 'deal with it',

147



G15 PMN PROGRAMMING FOR KIDS

but so that the knowledge as it were lives in your finger-
tips, in your feet, in your body language. To get that
familiar with any theme is possible given time and a lot
of sense of play and effortless work together with
occasional joys, celebrations, senses of achievement,--
but above all, time, yet more time, and still more time.
And why is it worth it? Because with some fields of
knowledge or discipline with which you have, as it were,
'wedded', you are no longer merely flirting with life but
you have some kind of depth knowledge--a depth in yourself
--a contact with something in the world, not just sex, not
just food, not just conversation with other people--but
something that goes rather deep in you.

When you have something of depth knowledge, then it
works within you so as to create a stronger personality, a
bit more self-confidence,--perhaps a lot--and this, in
turn, affects, positively, how you look, how you behave,
in almost every other field. So it is certainly part of
growing up to really get to know something not just on the
surface.

And now to the program. First, we need a matrix. We need,
that is to say, an array that we set up to be used not
just as a line of numbers but with rows and columns. Not
all that many, just enough that we can read in that space-
ship and put it out again on the screen. So here's an idea
of i:1--I suggest you cleanse the cards i:1 and up and
then type it in:

spaceship= 29

~. 8

300 spaceship
sz

&&

spaceship

k1l wwyymatrix

Quickly, I'll explain just how this card works out. First
of all, let's note that everything in the left column is
exactly--absolutely exactly--as we have done it as for
arrays, in the chapter in an earlier part of this book

148



G15 PMN PROGRAMMING FOR KIDS

where we begun with arrays. The only point worth
commenting on here is--where does '300' come in? Answer:
we are going to store a card in this, and a card, as you
by now know very well, has eight lines. Each line has 29
signs. Multiply 8 by 29 and you get 232. The rule of

thumb is that you add a bit more than 50 when you are
going to make a matrix rather than an array--and the idea
of adding 50 or more is written about in comments near the
word you find in the next column--namely, 'wwyymatrix'.

So, 232 plus more than 50 equals--rounded up--300. So
just remember, add 50 or more when we are going to make a
matrix. This is because a matrix needs to have a place
where it is stored the size of the columns and the rows,
and with free space for some more extra info if we want to
use it. All this comes up if you scan for 'wwyymatrix=' or
read about 'wwyymatrix' in the Third Foundation docs,
written so that they can be opened by the B9edit editor,
and part of the app 3,333,333 which is the TF app.

All right, now the next column.

You see '29' then '8' (x size, y size) and name of the
matrix-to-be then the word 'wwyymatrix'. So this is a
matrix meant to be used together with 'ww' and 'yy', and
they are very similar to 'ay' and 'ya'. You may remember
that 'ay' expects the position in the array. 'ww' expects
both column and row number, otherwise it is identical. And
'ya' expects new value and position in the array, whereas
'yy' expects new value and column and row number in the
matrix. The column number is the same as 'x', and the
row number is the same as 'y', and we have made rules
earlier on to tell the sequence--x before y since x is
before y alphabetically, and 'Y' is vertical--ie, row
number--because it has a vertical line in it.

I like to think about 'x' and y' rather than 'row' and
'column', because I find it easier to remember that x is
horisontal and y is vertical, so from now on, I'll say 'x'
and 'y' more often when we speak about matrices.

So, what the right column in the card i:1 above does is to

declare that the variable 'spaceship' from now on is going
to be used with 'ww' and 'yy' as a matrix, and not merely

149



G15 PMN PROGRAMMING FOR KIDS

be an array. It adjusts the variable and sets up the size
of x and y and such things.

Do you want to test it? To see how you can manually put
somethin into a matrix and get it out again? Let's go
into the TF terminal and type

~il

cc
That one card--supposing you have the famous 'nilcard' on
i:2--leads to just a big 'YES' on the screen, and nothing
more,--a signal from G15 PMN that it did its compilation,
or what we call it, successfully.

Let's try to put some stuff into the matrix. First,
let's simplify how we can go to it. It's called, as we
know, 'spaceship'. And by the two lines 'spaceship' and
'lk', we get to exactly where that matrix is. The warp
to it, as you know it is called.

But to get something into it and take something out of
it, perhaps done several times over, means that it would
be handy if we could find a shortcut, an even quicker way
of getting to the matrix than to type 'spaceship' and then
'lk'. So this is one way:

spaceship

1k

SX
Now it is stored in 'ix'. (We have used some of these
commands, the sl..s9 and sx, before, haven't we? And these
store in il..i9 and ix.)

So all we have to do is to use 'ix' each time we want
to put something into the matrix or get something out of
it. First, let's put something into it. It has the same
x-width as a card, and the same y-height. The x-width is
29 numbers--could be letters, when shown on a card--and
the y-height is 8 lines. In a matrix, we have numbers--
they can be shown as anything we like depending on the
program we make around it. A matrix is a very, very
flexible thing,--you control it fully via your program!
It can have any numbers you like--within the plus-minus
two billion range.

So let's put a number to position 5, 5. The number can
be anything--1000, let's say. So try to type this into the

150



G15 PMN PROGRAMMING FOR KIDS

terminal after you have loaded the card by "il and 'cc',
and put the matrix into 'ix' as we did just above:
1000
5
5
ix
Yy
That's how easy it is to put anything you want into any
place of a matrix. Then we put a million into position
28, 7:
1000000
28
7
Yy
And let's get out both values:
5
5
ix
ww
To show it,--it should say '1000'--type
nn
Right? And the million comes out here:
28
7
ix
ww
when you type 'nn' after this.

Pretty neat?

Now, this is a thing we need to remember when it comes
to dealing with matrices: when we say that their size is,
as in this case, 29 and 8, then it normally will mean that
we use positions x = 0..28, and positions y = 0..7. That
is to say, a matrix position usually starts at x = 0 and
y = 0 rather than x = 1 and y = 1. And so the top number
for x is one less than that which we give as size, and
the top number for y is one less than that which give as
its size. So the top position in a matrix of size 29, 8,
is usually, 28, 7.

This is something to get used to--that stuff sometimes
starts at zero, or, as we call it in G15 PMN, 'basis’',

151



G15 PMN PROGRAMMING FOR KIDS

rather than at one, or, as we also call the number one in
Gl5 PMN, 'dance'. These nice words, 'basis' and ‘'dance,

we have in G15 PMN simply because it's boring to say 0 and
1 over and over again, and because it tells something of
the attitude to these numbers: 0 is 'basis' for such as a
matrix, typically. And many things starts with, or has as
a 'yes', the number 1l--so the dance starts with it!

And that means that, such as inside a program, you can
type 'dance' instead of 1 and 'basis' instead of 0, if you
like.

So we have two 'useful things' here. Please read the
second one closely, because it contains a clue as to how
you can get a matrix to start at 1,1 if you like:

==>USEFUL THING TO KNOW: BASIS AND DANCE ARE NUMBERS

In G15 PMN, the word 'basis' means zero, 0, and the word
'dance' means one, 1. This is a word usage that we have
come with in this programming language. It is also useful
to have some numbers that are in the form of normal words,
when it comes to use (explained in later chapter) of such
as 'd2', 'd3' up to 'd8' and 'dh'. There are some more
suchs words for numbers if you look in the Third
Foundation documentation.

===>USEFUL THING TO KNOW: MATRICES OFTEN START AT BASIS
In the usual case, when we make a matrix with 'wwyymatrix'
we have made it 50 or somewhat more bigger than size x
times size y. So, for instance, if the matrix is going to
be 500 x 1000, then we make it so that it has size

500050 or at little bigger than that, via 'sz'. And then
we use x values from 0 to 499 (one less than size x) and
we use y values from 0 to 999 (one less than size y).

To make a matrix that is to be used so that it starts at
dance rather than basis, that is fine as long as we make
the sizes bigger. For instance, to make a matrix that has
x in 1..300 and y 1..500, then we make the size 301x501
plus 50 or more (instead of 300x500 plus 50 or more). And
we also tell 'wwyymatrix' that the size is 301 and 501.

If you find that the last part of the last 'useful thing'

152



G15 PMN PROGRAMMING FOR KIDS

is hard to remember, just remember that the 'useful
thing' do exist right here, and you can just return to it
when you need it.

Let's complete this program! We now want your beautiful
outline of a spaceship to be put into the matrix and for
this matrix to be shown on the screen, as a tiny tiny set
of pixels. Let's go at it! We need these cards--and I'l1l
talk us through them after we have them, right here. This,
then, you put to i:2:

getstars= 1lc

spaceship s4

1k

tx

10

1 11:8

rr 11:29
Next card, i:3, is here:

id m2

1k ml

42 ix

Yy
eq
h4

255 lo

mm lo.
This is, then, i:4, and we have put in a comment | there:

showship= 11:8

| in: x y 11:29

s9

SX

spaceship

1k

s5
And, finally, i:5:

ix m2

m2 ml

ad i5

153



G15 PMN PROGRAMMING FOR KIDS

ww
p3

i9

ml lo

ad lo.

So this is the stuff we need to read in the beautiful
sketch you saved to j:1, and make use of the matrix you
made in i:1, put it to it--that's 'getstars'--and then
show it where we like on the screen as a microscopic
version of your drawing (we'll see later how we can
enlarge such stuff).

Before we try it out, let's go through the cards. The
only entirely new thing, I think--no, we have touched it
briefly early in the book--is that we use 'ml' and 'm2'
instead of 'il' and 'i2' here and there. The 'ml' and 'm2'
is 'm' for 'modest', remember? :-) So 'ml' is one less
than 'il', and 'm2' is one less than 'i2'. So we get the
1..8 count changed into 0..7 count. That's all there is
to that.

Let's go through the cards. Before you try them, use the
opportunity to check that you typed them in entirely right
--no spelling issues, nothing omitted, and such things!

When you are satisfied that it is right, here's how to
check that we have got this bit of the game right. In
terminal, do as usual

~il

cc
then, supposing that worked out right (if not, go back and
have a look at the card number it complains about, fix it,
and try again), next type

getstars
and this will get the outline of the spaceship right into
the matrix. To get a tiny tiny version of it as dots on
the screen somewhere, type the place as an x number and as
a y number and then 'showship', eg like this:

500

300

showship
It ain't big, but it is a spaceship suitable for a tiny
little game! In case the dots don't make sense, go over

154



G15 PMN PROGRAMMING FOR KIDS

each and every one of the handful of cards you have typed
in and see if you can spot where you have typed it
differently.

And now, the explanations! You can dwell over these
cards yourself and figure it out without much explanations
from me. But you can also go back and look at the cards
later on, when you have forgotten something of my
explanation and see if you can make sense of it then.

Anyhow, here we go:

The card i:1 just sets up the matrix, and we have
already spoken a bit about that. The word 'wwyymatrix'
wants the x-width of the matrix, the y-height of the
matrix, and then the variable where the warp to the
array is stored. The array must have at least 50 more in
size than necessary to handle all the x times y numbers.
That's the fast summary of i:1. For more info about it,
look earlier in this book about arrays, or earlier in
this chapter about matrices, and, in addition, there's
always some information in the Third Foundation docs.

In addition, you can use the 'scan' to look up examples

of use of such as 'wwyymatrix' (eg, by scanning for just
that word instead of for 'wwyymatrix=', and then you type
'mmm' for each further search). Finally, you can look up
the program--or the 'source code', as we also call it--for
any G15 PMN app and you'll find that many of them have
matrices and some of these are well commented and have a
program that is easy to read.

Let's go to i:2 and i:3, together they construct our new
word 'getstars'. If you look at the bottom right part of
the i:2 card and the same for the i:3 card, you get a good
overview over what it does. You see the LL: twice there,
in i:2, and the LO also twice, in i:3. So these are two
loops--as we say--and one outside the other one. Before
these two loops there is some setting up of some stuff.
That's the main outline.

So why are there two loops? How does that work out? Well
just think of how you read this bookpage: you spend time
with one line of text, read that from left to right, then
you go one step further, to the next line, then read that

155



G15 PMN PROGRAMMING FOR KIDS

from left to right, and so on. So in going from left to
right on one line, you are as if 'increasing the X'. In
going to the next line, you are as if 'increasing the Y'.
You finish each line before you go to the next. So one
line is like an 'inner loop', and when it is finished, the
'outer loop'--that takes you to the next line--can get a
chance of getting on.

And so we want this program to 'read' your drawing of a
spaceship, which you have stored at card j:1. And it will
read it one line at a time--then go to the next line--and
so the outer loop, the first loop, is one line after
another and that's the LL:8. The inner loop is to take all
the blanks and stars that you have put into that line, and
there are 29 of them all in all, so that's LL:29. Alright?

If you think this way of formulating it--'inner loop'
and 'outer loop' is confusing, then don't focus too hard
on it, for when you get on with programming, you'll come
across examples of x and y and loops inside loops often
enough that you'll figure it out, whatever words you use!

One thing here we can point out as a 'useful thing', and
that is this:

===>USEFUL THING TO KNOW: Y-LOOP FIRST, THEN X-LOOP

When you are going to loop through something that has
lines of letters, or rows with columns, or a matrix with

x and y places, then as a rule of thumb, write LL: for the
Y-size (ie, the height) first, then write LL: with the
X-size (ie, the width) second.

Then, before you complete the loop-inside-a-loop with
'LO' and then 'LO' again, you can get to the matrix by
using 'ml' and 'm2', as these count from basis, from 0,
and up, which is often the case for most matrices.

(Otherwise use 'il' and 'i2'.)

As for the sequence, the 'ml' concerns the FIRST of the
LL: and the 'm2' concers the SECOND of the LL:. So 'ml'
will have to do with 'y', and 'm2' will have to do with
'xX'. As a rule of thumb, then, since you often are going
to use x, then y, for most functions that wants both x and
y, use then 'm2' then 'ml' (instead of 'ml' then 'm2').

156



G15 PMN PROGRAMMING FOR KIDS

In other words, then, when you have LL: twice, remember
that it's isn't the normal count of first 1, then 2,
rather it is first 2, then 1 (as in the case of 'm2' and
'ml'). In yet other words: remember that the sequence can
be a little bit confusing when two loops are inside one
another!

Right? So now we have looked at the overall way that the
'getstars' work. Let's look at the details of it.

The first thing it does is to get hold of the matrix. It
has 'spaceship' then 'lk' there, and that puts the matrix
warp on the stack. Then it puts it to any of the many
possible places--'tx' is used, so 'jx' will bring it back.
(We can use lots of other places only that when we have
two loops inside one another, they use 'il' and 'i2' so we
won't store anything there.)

Then it uses the command 'rr', which we briefly
mentioned earlier on--it 'Reads a caRd' (or a 'Record', if
you like). And which is the card it reads? '10' and 'l' is
given to it. So it is card #1 in disk #10. But what is
disk #10? Well, #3 is c, #4 is d, #5 is e, #6 is f, #7 is
g, #8 is h, #9 is i, and #10 is, for sure, 'Jj'. Then #11
would be k and #12 the L-disk.

(The L-disk is sometimes used a bit differently when a
G15 PMN PC connects to other G15 PMN PC's--then the L-disk
may sometimes be used for these two PCs to connect. But
except for such particular programs that use L-disk in
such a way, the L-disk is fully free to be used for
whatever you want it to be used to.)

Right, so 'rr' gets your outline of a spaceship to
somewhere. To where? To 'lc', the 'load card',--or, to
use a fine word for it, the 'load buffer'. (We also have
a 'save card' or a 'save buffer' to write cards.)

There, the card is like one long array--starting with
the first line then, after those 29 signs, comes the next
line with another 29 signs, all the way up to 232 signs.
So it's only natural that we want to get hold of the
beginning of that 'lc' and store it to somewhere, which we
can then jerk up, one sign at a time. Again, we can use
several places to store this. We use 's4' and that means

157



G15 PMN PROGRAMMING FOR KIDS

that it is stored at 'i4'. We also have a special command,
which perhaps we haven't talked about before in this book,
which is 'h4', and that 'hitches' the value of i4 one up.
In other words, the command 'h4' adds one to il and stores
it back to i4.

And now we have said more than enough about i:2, I
should think! Let's quickly deal with the rest. It's going
to be simpler, for it is much the same kind of thingy with
small variations.

In i:3, to look at the last part of it first, we see the
'h4' as expected, and also the 'lo' twice over. But what
goes on in the left column? It's a little trick, easy for
a programming language like G15 PMN, but hard for most
other programming languages. G1l5 PMN is made so that you
can add and multiply and do such things with just about
anything,--very few restrictions, great freedom, and more
fun possibilities once you get into it.

So, in the left column of i:3, first it fetches the sign
from the j:1 card, the present position. The first time,
that'll be the upper left corner. That's either a space,
which has Ascii number 32, or it is a star, which has
Ascii number 42. Right? (Consult the Ascii table some
pages earlier in this book when you want.)

So it does 'i4' and then 'lk', or 'look', at what's
there. Is it 42? That is what it does next--'42' goes to
the stack, then 'eq' compares and--if you remember how the
'eq' works--it produces a 'l' to say 'yes' or a '0' to say
'no'. Then we multiply this value with 255! And so, when
it is 42, we get it to become the brightest green possible
--namely, a dot of intensity 255. In case it is blank, 0
times 255 is still 0, and so it becomes pitch black.

Satisfied with our result here, we then 'yy' it into the
matrix, which is at 'jx'. In which position? Answer: m2 is
the x position, ml is the y position, so it is 'm2' first,
then 'ml', as in the 'useful thing to know' just above.

That's a lot of words for very few and rather simple
commands. Do you see the power of a programming language
also in this way? A good programming language has in it
the power of what we can call 'abstraction'--it is

158



G15 PMN PROGRAMMING FOR KIDS

'abstract' in that it just throw numbers around without
bothering about meaning. And so, to work with it can for
us be a good distraction from sometimes confusing events
of life. A distraction that is also a meditation.

Then the next two cards, much simpler still to explain.
The i:4 and the i:5 shows the spaceship, which ought to be
-—at this point--safely stored in that matrix which is in
what we call the 'memory' or the RAM of the PC. We will
put it to the screen straight from RAM--and that is
something that goes very fast. But to get it from disk to
RAM is something we only do each time we start up the
program, once, for getting anything from the disk isn't
nearly as fast as to get it from RAM. And in that way, we
save up on the computer's powers so that we get a more
interesting and flowing game experience.

The 'showship' has--as you see if you look at both i:4
and i:5--the same type of loop-within-a-loop as we have
just discussed. This time it is a question of dots, or
'pixels', as we say, rather than signs in a card, but the
numbers are the same, 29 and 8.

At i:4 we have a comment bar, a '|', and it says that it
expects something 'in', and what it expects in--as 'input'
we can say--is x and y. Alright. So this function doesn't
put the spaceship always in the middle of the screen or
on top left or something. It can put it anywhere we like.
But we have got to tell where. So we tell an x, about up
to 950 or so, and a y, about up to 700 or so. In this way
we won't go outside of the screen limit of 1024 and 768,
even when the little ship has some size.

Such a comment can be dropped and the program still
works. But when you read a program with a comment line
that talks about what the function has as input, and a
comment line that talks, when it does leave something on
the stack, about what it gives to the stack--the keyword
here is often just that, 'gives'--then it is much easier
to read the program later on. So it is a good rule of
thumb to have comment lines in the beginning of a function
--just after the 'funcname=' part--which briefly tells

159



G15 PMN PROGRAMMING FOR KIDS

about what comes 'in' and what it 'gives'. This is far
more important when the program goes over more than a
handful of cards. Then it becomes really important to have
some such map over it all.

But let's focus and get this explanation done with! The
spaceship matrix is still found by 'spaceship' and then
'lk'. Just as a variation--not because it is in the
slighest important--it is here stored somewhere else. It
is stored via 's5' in 'i5'. But before that, the 'x' and
the 'y' have got to be stored somewhere--at least, the
program becomes easy to read that way. (They could of
course just be on the stack if we like but then we have
got to clear it up when the program finishes.)

So we use 's9' and then 'sx'. You can say it the other
way around if you like, or use some other places. But I'll
explain why it can make sense sometimes to use 's9' then
'sx' when you have 'x' then 'y' as input to a function:

When a function has 'x' then 'y' as input, it means that
'y' is on top of the stack. This is because, as we talked
about in one of the earliest chapters in this book, that
which is put in latest, is on top, and that is what we
first get out of the stack. We said 'LIFO'--last in, first
out, didn't we? So the 'y' is on top. And we want to put
it somewhere nice. The 's9' is chosen because the '9' has
a bit of similarity in its lines to something of 'y'. To
get the 'y' value out, later in this function, we use 'i9'
and we remember this because 'y' and '9' has a little bit
similarity, okay?

And then, of course, comes the 'x' value, and what is
more natural than to put that in 'ix' via the 'sx'? Right?
So sometimes we can use 'sx' then 's9', other times we
can use 'tx' then 't9', and at yet other times we use any
one of the others, including such as 's3' and 's4'. The
only rule is that once you have decided where to put the x
and the y, stick to using that place inside that function,
inside that word.

Then on i:5, finally, we put it all together. That's where
the 'draw-ship-on-the-screen' looping completes. Just

160



G15 PMN PROGRAMMING FOR KIDS

before it completes--and it's often a good thing to read a
card from the bottom right and up--it calls on 'p3'.
Remember that little command? It puts a point--a dot--a
pixel--to the screen at place x, y and with intensity as
the third thing given to it, a number of value 0 (black)
up to 255 (bright green).

Alright, the intensity comes from the matrix. The
matrix is in i5. Just before that we give 'm2' and then
'ml'. That's x and y, okay? And we use 'ww' because
that is indeed the way to get anything out of a matrix, in
the normal case. 'yy' means into the matrix, 'ww' means
into it, just as--for a pure array--'ya' means into the
array, and 'ay' means out of it.

On the left side of the card i:5 the place on the
screen is worked out by means of two uses of 'ad', or
addition, plus. The 'ix' and the 'i9' are used--and we
add just how far we have come through the matrix. We add,
in other words, the 'm2' or 'x' for the matrix to 'ix',
and the 'ml' or 'y' for the matrix to 'i9'.

If we didn't do this addition, then either the matrix
would be shown always at the top left of the screen, or
the whole matrix would be shown in just one dot on the
screen and so be in practise invisible. So what this
function does is to say that the x and y given by the
person who calls this function is to be the top left
position of the spaceship. A little bit is added to it, so
that each of the little dots get spread out over a 29 x 8
area.

And that's it! So when we run this program, we type in
'getstars', and the matrix get full of the stuff, and then
we type in an x and then an y--eg 100 and 100, or 500 and
300, or 600 and 200,--and then the word 'showship'.

If you find all this a little bit complex, I can promise
you that it gets simpler as you work with matrices a bit
more. For it is really the same kind of thing over and
over again--the few additional commands that do exist to
handle matrices, such as 'w9', all build on just this what
we have talked about here. In the last chapter of this
book we'll put the whole game together and use pretty much
the cards we have here and we'll very briefly talk about

161



G15 PMN PROGRAMMING FOR KIDS

how it works there, too--and you'll also see, and if you
type it in, experience the clarity that comes together
with typing the matrix program into the CAR editor--so
that all in all you'll have a chance of getting much more
understanding of it.

Part C, chapter 4: HOW TO SOLVE IT, AND LARGER MATRICES

How do you solve anything in life?

I like the question because it's obviously too giant,
too organic, too dancing to allow for any concrete answer,
any definite set of steps or method. It is, in other
words, a question that appeals to you as a human being and
it doesn't relate to you as if you were a machine or
something--rather, the question relates to you as a 'flame
of philosophy', a question that can have an intensity like
a flame, a living question.

And so we can have a dialogue--with ourselves, with each
other, when we put a question like that and let it float
in the air, let it be suspended, let it hang there and
appeal to our intuitions.

In the word 'educate', there are some Latin roots, and
they could be translated like this: 'to draw out'. And so,
in a classroom, at a school, perhaps you are there to sort
of 'remember' what you already somehow know, deep inside.

162



G15 PMN PROGRAMMING FOR KIDS

The teacher helps you to 'draw out' this knowlegde of
yourself.

To be able to really use your mind means that you are
willing to actually keep an open mind and apply fresh
thinking to things--which is different than just repeating
some words as a 'standard answer', given certain
questions. It can also be called, 'to improvise'.

When we program, and the program has to be corrected, how
we handle that situation can teach us something about how
we can handle other challenges in life,--I think. At least
--if we find in ourselves some ways to correct programs,
also when the program is hard to correct,--we may get an
inspiration about relating to other things in life in more
or less a similar way. Of course there are enormous
differences between programming and mostly everything else
--but when it comes to fixing a program, it may have,
after all, great similarities, with how we can solve
anything at all.

Take one rule of thumb: when you are going to solve
something, and it appears that no matter what you do, it
still has got to be solved, then divide things up and go
through one thing at time, and find out also how
important each thing is.

If a program doesn't work, it may have something in it
that is rediculously easy to fix once you spot it, but
perhaps you haven't looked at the right place. You may
have thought that the first card or cards have been
perfectly tested in all ways when they haven't. There may
be a tiny little thing there that has a big effect later
on. But then there may be more such little things. So you
need to divide it up. It is not about kicking the
computer. Or say that programming is wrong, or the
language is wrong. That 'all or nothing' attitude is
rarely right when it comes to solving a program problem,
and it is also rarely right when it comes to solving a
life problem.

Divide things up! And separate what's most important to
look at now, from that which certainly can wait. Don't

163



G15 PMN PROGRAMMING FOR KIDS

demand a solution to absolutely everything at once.
Something surely is more important than something other.
And there may be a handful of solutions ready for you once
you begin looking for them. And more will come once you
start getting them realised.

Be creative about these solutions. When you look to the
side of normal ways of thinking as to solving things, you
may find, in those sideways, that new solutions open up.

Yet sometimes it is most right to keep on the narrow
path and be patient and work it out from within there, not
escaping from the main path.

In working with G15 PMN, you are working with numbers, but
these numbers sometimes have names--words for them, and
sometimes one sequence of them is right and the opposite
sequence of them is wrong. Take, for instance, when you
set up card i:1 in the chapter just before this, the one
where you make a matrix. Suppose you write '8' and '29'
instead of '29' and '8'. Initially, nothing appears to be
wrong. The size of the matrix is still fine--8 x 29 plus
50 is the same as 29 x 8 plus 50. Both are within 300. So
that's a tiny thing. Aristotle once said, "A small error
in the beginning grows to a big error eventually". Now
that isn't correct for all small errors in the beginning,
but in the case of the spaceship, you'd better get the

x and the y right!

In case the matrix gets twisted in its definition, it
will produce some graphics, but not the right graphics.
G1l5 PMN is great in giving you freedom to do anything you
really want--it doesn't impose lots of heavy-handed
restrictions on you as a programmer. It has been made as
a stage with a lot of openness in it, but with fixed
limits only as for the limits of that stage. On that
stage, once you're on it, you can dance as you like, if
only you stick to some essential rules.

So, with G15 PMN, you have this enormous freedom in how
to structure things, but it also means that you will have
to check the little structures you make--say, each couple
or handful cards you make for a program, you check as
best you can. Not only check that the PC doesn't protest

164



G15 PMN PROGRAMMING FOR KIDS

when you do the 'cc' thing and compile the cards, but you
check also that the cards seem to really work.

And when they don't, don't be too sure that things were
defined right even when you hastily look at a card and
assume that 'it has got to be right'. Don't look hastily.
Look slowly. When you are going to solve anything, divide
up what you are going to look at--then look playfully,
dwell, take pauses, ask questions, don't rush on and so by
rushing avoid seeing the obvious things. The obvious
things may sometimes be hard to see just because they are
obvious. They are so obvious they 'melt' into the
environment, they are so obvious they 'cannot' be wrong--
but they can be wrong, sometimes. And so you need a kind
of playful, self-critical, and critical, attention to
these things. That includes the earliest cards when you
define something that later behaves funnily.

And you go through each card. How do you check whether
something like 'getstars' work, if you suspect that it
doesn't? You look at it and it looks fine but maybe you're
overlooking something. And so you want to test it. How do
you do that?

A way to do it is this: first, make extra space inisde
the function. To make extra space normally means that you
copy a bunch of cards 'to the right', and then erase that
which is double, in some clever way. (In some of the
earliest chapters in this book, where we discuss <CTR>-C
and <CTR>-T, we talk of how to insert space for extra
cards in between others. That's the same type of thing we
want.)

So, having made extra space--let's say, inside the loop,
after the LL: and before the LO,--then you could try and
put some numbers to the screen. The clue is that you do
this without upsetting the stack. So you could put in, for
instance, 'f' then 'nn' at a spot. That would allow you
to see a certain part of what goes on. When you do such
testing, you are also doing what I like to call 'probing'.
So I often insert a comment line, |, with the word,
"probe", put in those parts--so I know what to remove when
I'm done with the probing, the checking.

When you probe a function, you must sometimes pay

165



G15 PMN PROGRAMMING FOR KIDS

attention to not get too many things to the screen. This
matters much when it's inside a loop. You may want to have
for instance 29 numbers shown--for the first line of the
card--rather than all 232 of them. So then you can also
modify the LL:8 so it says LL:1 instead. That's one way of
doing it. In the name of probing, all such little
modifications are okay! But put in a line like "|probe" so
you can easily modify it back again.

Well, that's enough about program correction at this
point. Do you still have the cards j:1 with your outline
of the spaceship, and i:1 to i:5 inside the PC? How about
showing the ship in a completely different, and larger
way? There is an easy way of doing this, with some new
words, but they are easy to explain since you're now
quickly becoming such an expert on G15 PMN matrices. So
I'll show you how you can make card i:6 and i:7, and you
can type it in and try it--it will look really nice, your
ship will show in upper left corner in neat squares as
part of a matrix that fills the whole screen a bit like
when you start up the TF terminal each time. So here's
i:6:

showship3= 11:8

ce 11:29

freshsketch

newmatrix

spaceship
1k
s5

And here's i:7:
i2 lo
il lo

m2
ml
i5
ww
matrfield approvesketch.

166



G15 PMN PROGRAMMING FOR KIDS

And to test it, supposing i:l to i:5 are all as in the
chapter just before this, and your outline of a spaceship
is still at j:1, type this, inside the TF terminal:

~il

cc

getstars

spaceship3
Did it work? If you typed it in precisely as this, it
should work, and it looks neat, eh? Here's how it works:

First, the 'showship3' clears the screen--that's the
'ce' you've seen before

Then, the 'freshsketch' is the way to begin to use the
way to show things to the screen in this funny way. When
you see this word, you'll often spot 'approvesketch' in
the same function: you see it in the next card. And that's
when it is actually put to the screen. In the middle,
after 'freshsketch' and before 'approvesketch',6 there is
some drawing activity. In this case, it is by 'matrfield'.
You see that on i:7 also.

The word 'newmatrix' simply makes a big block of bright
green over a big part of the screen. You can drop it if
you don't want to see the vertical and horisontal lines of
the matrix on the screen.

Otherwise it is pretty much exactly as in the chapter
before this. We store the matrix in 'i5', via 's5'. Right?
That's where we use 'spaceship' then 'lk' then 's5'.

At i:7, we call 'i2' then 'il' and that is 'x' and 'y',
with the normal confusing sequence ;-)

In this case, we just want it to show at the upper left
side and so we don't add anything to these numbers.

Then we go to the matrix via 'i5' which is given to 'ww'
-—-just as in the chapter before this. This has 'm2' and
'ml', which is 'x' and then 'y', again in this slightly
confusing sequence--but not confusing when you get used
to it.

Now when we call 'matrfield', it uses much larger dots
on the screen than the small dots that 'p3' uses. So there
are fewer of them. They are from 1 to a little over 140
as x, and from 1 to 100 as y. The reason we use 'i2' and
'il' in connection to 'matrfield', and not 'm2' and 'ml’,

167



G15 PMN PROGRAMMING FOR KIDS

is because this particular way of putting something to the
screen doesn't start at 0, but at 1,--in other words, with
'matrfield', it starts not at basis, but at dance. (You
remember now that 'm' is for 'modest', right?--and so 'ml’
is one less than 'il', and 'm2' is one less than 'i2', and
in a loop, that means that ml and m2 are from 0 and up,
whereas il and i2 are from 1 and up.)

So that's all there is to this way of showing it!

Now which of the two ways of showing the ship did you like
the most? Hands up those who liked the second way, in this
chapter, the most! All right--I see lots of hands going up
there--clearly a majority. It means we should stick to
this way, when we make the game. It wasn't entirely clear
to me which of the ways would work out more interestingly
when we started doing this. This is one of the ways in
which programming, while we work on the PC, is 'teaching'
us something--even though we make the programs, what the
PC comes up with, even when the program works perfectly,
is sometimes surprising in one way or another. And so we
are in a process where we improvise--that is to say, we
try this, try that--but at the same time we apply logic,
we apply thinking, we are, indeed, engaging in the art of
thinking.

Just one thing--when you use that word 'matrfield', then
know that there are at least two big alternative ways of
using it. One is to let the PC keep on 'sketching' in the
background, not showing anything on the screen before it
is finished. The 'approvesketch' tells the PC that what

it has worked out is now going to be shown. That's the
fastest way when anything complicated, that may £ill up

a large part of the screen, is going to be shown. But when
we have a game like the one we have in mind, we want just
a tiny bit of the screen to be updated--and we want it to
be updated at once. We don't want to wait until the whole
screen is sort of 'rolled out', just to get a little space
ship moved from one spot to another. And so, when we are
in the final chapter where we make the game itself, you'll

168



G15 PMN PROGRAMMING FOR KIDS

see that the word 'sketch' isn't used. Instead, we call a
function at the start of the game that makes 'matrfield’
to be very active and direct (the word is a complicated-
sounding one, but it's only called once: 'nowdirectmatr';
and when it is called in the beginning of a game, then,
just before the game completes, another word is used to
tell 'matrfield' that it can go back to normal, and that
other word is 'restoremdraw'). I'll repeat these things in
the final chapter, I just wanted it to get briefly said,
so you're a little prepared for it, okay? :)

The previous chapter was a very long one; let this one be
a very short one, so we get a sense of well-deserved
relief from all this thinking. Time to go out and have
lots of fun! --And, knowing, we're progressing towards
making a little game with a nice little outline of a flat
spaceship that we can throw around the screen in some way.
We're getting there, we're getting there. And from that to
all sorts of other programs and games.

Part C, chapter 5: IMAGINING THE UNMAKEABLE SMART PROGRAM

In the next chapter, we'll move on with our game again.
But in this chapter, we are going to get a glimpse of
something, yes, infinite! :-) A keyword is: "Goedel".

Have you ever thought about why sometimes talking
something over with someone can give so much more fresh
new ideas and sense of understanding and all sorts of
things like that, compared to how it is Jjust let the
thoughts swirl around in your own head?

169



G15 PMN PROGRAMMING FOR KIDS

In other words, what is it about some conversations
that makes us smarter than we usually are?

I mean, the other person, or people, may perhaps be
just as confused as you may feel about the theme--whatever
it is, which you want some clarity about. And then you are
able to 'make clarity' by discussion, by conversation, by
--to use a nice word--'dialogue'.

But why is it so? How come it works so well, when it
does work? And sometimes we have to bring clarity to
ourselves when we don't have anyone to go to at the very
same moment we need it--and how do we make clarity then?
You follow?

So whatever there is to the 'magic of dialogue'--a rule
of thumb is: better than to just 'let the thoughts swirl'
is to express them and look at what you express. To
express a thought does something to your mind. You are
suddenly able to 'see' the thought, and feel it over, and
you get fresh ideas. And that is at least part of what a
conversation can do. So can you have a 'conversation
with yourself'?--of course you can. Surely you can. And
this is not just something for old people: you can do it
no matter age, and you can do it elegantly, without it
looking strange. I don't mean that talking to oneself,
aloud, is something we should make into a habit, and
certainly not in public. But there are several things you
can do to have a conversation with yourself so as to
create clarity in yourself. This may concern how to make a
program or any of a zillion other things.

For instance, you can write. And so I would suggest, get
to 'tame' the keyboard of the Personal Computer. Let your
fingers learn to type without you having to look at the
keys all the time. Let your fingers find balance and dance
and let them fly. And so you can type into some place--
an editor, a card, into the Eliza program in G15 PMN,--
wherever it is, you get to look at your thoughts that way.
You can ask questions. You can divide things up, as we
talked about in the previous chapter. You can get to new
clarities, new questions, sort things out. Writing is
enormously effective--just don't hypnotise yourself by
your writing into believing in nonsense. Even if you are

170



G15 PMN PROGRAMMING FOR KIDS

very good at writing, it doesn't mean you are getting
nearer reality--even if it feels very nice and harmonious.
So the writing must be self-critical, not full of emotions
and sentimentality (sentimentality, that's a word we use
for instance about emotions that we give too much
importance to). The sentences mustn't overstate too much,
nor understate too much. Rather, find the golden mean of
touching reality without leaning too much to any side.

So 'self-critical' doesn't mean obsessed with saying
negative things about yourself. It means being a little
careful about hypnotising yourself to believe whether in
outrageously positive or outrageously negative things,--
and not just about yourself, but about anyone.

So writing is one way to express your thoughts. You can
also whisper your thoughts, without necessarily moving
your lips--just speak them more clearly to yourself inside
your mind--and in that way come into a feeling of giving
attention to your thoughts. There's a great meditation in
that. You can clear things up.

If you are entirely by yourself and completely upset and
unable to feel at ease with thinking either in whisper or
as writing, you can of course also express things in a
clear voice to yourself, and in that way sort things out
a little. Then you can turn to quiet whisper, or writing,
as you get calmer.

There are other ways of thinking also: drawing things,
painting, dancing, taking free walks without quite knowing
why and where to go,--and even using some parts of your
body, such as your fingers, to move through certain ideas,
take you to questions and possibilities (a philosopher
who taught me certain things, David Bohm, used to do a
certain 'thinking with his fingers', also, quite often,
during conversations with others).

When you are giving attention to yourself, then it is a
deeper part of yourself that gives attention to a more
superficial part of yourself. Can we put it that way?
This can intensify, especially when you also turn
attention to something very beautiful. Beauty, order,
harmony--these things can always teach us something new,

171



G15 PMN PROGRAMMING FOR KIDS

prepare our minds for whatever we are going to do--and
when we give attention deeply, intensely, it can focus
itself into a sense of fresh, flowing, dancing feeling, a
glowing sense of something really, really good. And so we
can come to a feeling of giving attention to the flow of
attention itself. Right? A very peculiar thing, we are, as
it were, full of awareness, attention--it is energy that
flows on and on--not confined to your body or head or any
particular place--together with others present,--and
flowing on and on. And this we can call 'trance'. We don't
really need any drugs or anything like that to get to it,
though drugs can hint of what it is all about. But drugs
always produce side-effects, enormous drowsiness, or
emotional stuff, for days or hours or more afterwards,
depending on how heavy the drug dose is. So drugs, unless
you are careful, can be an expensive way to get a trance.

The 'purest' way, the meditative way, to get to a trance
is by giving flowing attention--first to your thoughts.
Then give attention to something beautiful. Finally, give
attention to attention itself, and let it flow out and
embrace all the world--as a sense of love. Reunion.
Compassion. That's really the stuff religion is about, not
the re-reading of some old scriptures as a form of boredom
& stupidity: but religion in the sense of a glowing light,
a sense of attention, of energy, burning happily within.

These are big words, and when we are moving towards
programming--perhaps through the field of 'logic'--is
there anything there that we can compare such big thoughts
with? Is there anything in the field of logic that matches
a bit what we spoke of as 'attention to attention'?

There is! It's called--whatever it is called--but we can
call it this: 'self-reference'. To refer, or give
attention, back to oneself. To give attention to oneself,
to give attention to attention.

The whole theme of self-reference in logic is a funny one,
that more or less began with the 20th century--at least,
that's when it begun for real--and it changed the careers
of many people and led to many new types of questions that

172



G15 PMN PROGRAMMING FOR KIDS

also changed the course of technology and led to the
development of computers. And so it is perhaps not
peculiar that those fond of computer programming quite
often have been very noticable as fans of meditation ever
since meditation and trance and all things 'hippie' caught
on in the 1960s.

Now that you can do 'compu-speak'--now that you can do
some programming--you can get a powerful glimpse into what
that discussion was all about, and how it lead people, and
keeps on leading people, to regard living human minds as
something beyond the machine. This is something that can
be written new books about forever, trust me,--it's that
rich and complex a theme. So I just have to jump into a
bit of it, and try to make that bit as clearly as possible
on its own. Okay?

Put very, very simply, when a machine, or something very
much like a machine, gets to refer to itself, it gets into
some kind of turmoil, some kind of paradox, some kind of
break-down, and it has to do with infinity. At least,
that's how it looks if we push that state of affairs and
imagine it to be complete and instant and all such things.
And so this was found by the young logician Kurt Goedel
in the 1920s to mean that we cannot make a set of rules
out of logic. He showed that when logic attempts to handle
all questions by a set of rules, then these rules always
lead to self-reference and this self-reference always
lead to complications for these rules. Again, these are
simplified words, but they can be given more precise
meanings and then they are correct--even most mainstream
scientists in the 20th century admit that.

If you find all this complicated language, I agree. So we
can say something similar in a language closer to our own
--here is an attempt: there is no program that can tell
everything there is to know about programs. We cannot, in
other words, make a 'master program', or an 'oracle
program', or a kind of 'wonder program', that can be used
to say all about how all possible programs behave. In

173



G15 PMN PROGRAMMING FOR KIDS

other words, we cannot have full self-reference in a
computer. So a computer cannot give attention, fully, to
itself. A program cannot give attention, fully, to itself.
So a computer doesn't have mind, doesn't have--therefore--
intelligence. So "Artificial Intelligence" is not possible
--right? It all belongs together, at least if you take the
word 'intelligence' very seriously.

To show a bit of this is possible if we gather our ideas
and jump straight into one particular form of behaviour of
programs. Look at this program, for instance--it uses the
'ql' that reduces the counter by one:

ourtest=

11:1

gl

lo.
If you have read through all of the book so far this
program is easy as a piece of cake for you--at least if
you remember what 'gql' does.

This program doesn't ever exit--the PC that starts it
perhaps must be powered off and rebooted. The program has
no exit. The LL: thingy adds 1 to the counter, gl takes
away 1, and at LO it jumps up to LL: again and so it goes.

See? So that is an example of a program 'behaviour'--the
behaviour is that the program doesn't exit. And there are
extremely many possible such programs.

This program, on the other hand, is one of the extremely
many that, by contrast, does exit:

ourtestb=

11:10

il

nn

lo.
So 'ourtest5' prints numbers to the screen from 1 and up
to 10 and then the program is done and it exits. The
behaviour of this program--one of the behaviours--is that
it does exit.

So, a very simple question about any program whatsoever
is this: does it exit or not? And it may or may not take
something off the stack in so doing.

Years after Goedel's work, a guy named Alan Turing tried

174



G15 PMN PROGRAMMING FOR KIDS

to show that what Goedel did was wrong--but he didn't
achieve it. Yet, in the process, he very cleverly thought
out almost everything about computer machines, and he even
made one--not very elegant compared to today's computers,
but it did some useful work in the 1940s. After Turing
again, some people worked on this theme: does a program
exit or not? And that thinking led more people to get to
at least some of the grand things that the chap Goedel was
working on decades earlier.

So let's stick to this idea: does a program exit or not?

The programs above each fits in one card. We could, if
we bothered (but don't bother) put them to i:1.

Then imagine that somebody claimed that they had put
together a fantastic program that can tell whether any
program at all does exit. Let's say it is on the L-disk.
It is a 'master' program, or 'oracle' program--the idea of
the Oracle is--in Greece--that of a holy place where any
question can get a deeply right answer. And the amazing
thing is that by a bit of thinking we can show that this
whole idea is absurd, and when do show that it is absurd
or meaningless, then we are doing something a bit similar
to what this chap Goedel did. Not quite the same, but
somewhat similar.

So it is an experiment in thought.

The word "experiment" means that we set something up so
that we can look at it, give attention to it, and learn
from it, right?

The oracle program, let's imagine, is called doesitexit.
It is used like this: First the program is fetched from
the L-disk, then we feed it with the location of any
program it is supposed to look at, and it will tell 0 or
1, where 1 means 'yes, it does exit sometime', and 0 means
of course 'no, it never exits anytime'.

So suppose we had one of the programs above on i:1l. Then
we would do something like this--first, load in the master
program:

11

cc
Then feed it the i:1 card and call it and then show the
result:

175



G15 PMN PROGRAMMING FOR KIDS

~il

doesitexit

nn
So in the first case, the little program with the 'ql’',
should give '0', because it doesn't exit. In the second
case, the program should exit after it has counted up to
ten, so the result ought to be 'l', because it does exit.

So far, so good--in our thought experiment. In order to
show that no oracle program of this sort can be made, we
cleverly set up a program that makes use of the oracle
program and acts so as to do the opposite of what the
oracle says. Let us see--something like this would do, I
think:

funprogram= 11:1
~il ql
doesitexit lo.
n?

se

ex

So imagine that we put this program to card i:1, and then
load in the oracle program from disk L, and, finally, we
give this elegant little thing at i:1 as input to the
program:

11

cc

~il

doesitexit

nn
Right. We have set up the thought experiment. We are now
going to see what can happen, given that 'doesitexit'
produces a '0' or a 'l' and nothing else, and that '1'
means that the program does exit, '0' means that the
program doesn't exit. Let's look slowly at i:1 then, the
'funprogram'. It starts out by feeding itself--since it
is stored at i:1--to 'doesitexit'. It does this by the "il
followed by the word doesitexit.

After 'doesitexit' has finished with its work, it is

176



G15 PMN PROGRAMMING FOR KIDS

either 0 or 1 on the stack. Let's first take the case of
'0'. Then the command 'n?' changes that 0 into a 1.
(Remember the 'n?'? We talked about it in one of the
earlier chapters in this book--it can be thought about as
a question, 'is it no?').

When the n? has changed the zero into a one, then the
command 'se'--which 'sees' the next command and sees to it
that this is only done when it gets a 'l'--will let the
next command be done. And the next command is 'ex'--exit!

So that's absolutely rediculous. The oracle program says
the program won't exit, and that leads the program to
exit!

Well, then, is there any better result by imagining that
the oracle program gives a '1l'? Let's see.

The 'l' then gets changed by 'n?' into a '0'. The zero
leads the command 'se' to ignore the next command. So the
'ex' is ignored. Over, therefore, to the second column.
But there we have the loop with 'qgl' that, as we saw
earlier in this chapter, never exits! Again absolutely a
contradiction. The oracle program says that the program
shall exit, and just that leads it not to exit, at all!

Musing over this interesting situation, it means that no
matter what program is on the L-disk, it either isn't
correct--it produces wrong results--or it is so that it
doesn't work for every program, just for some programs.
And that type of thing--it doesn't do it right everywhere,
only somewhere, that is exactly summed up in the title of
young Goedel's work from about 1930, in his single, long
word--"incompleteness". It isn't complete. It may not be
wrong--this master program or set of rules or whatever--
but if it isn't wrong, it isn't covering everything,--it
is, in other words, incomplete.

[Note to advanced readers: you may wonder whether the

program at i:1 is really exactly how it should be, since
'doesitexit' has to be loaded in first. But we wanted to
show the idea of the thing. If you want to be more exact
in that way, you can just copy the program at the L-disk
to the I-disk and, on top of that, put the card with our

177



G15 PMN PROGRAMMING FOR KIDS
little program. Then you do exactly as above.]

Now, with the benefit of hindsight--with the benefit of
having had a lot more time to look at all these things--
let us dwell a little bit about the whole thing. Remember
that earlier in this book we talked about how it is that
something funny may arise once we say "..and etcetera?"
We may have perfectly good results when we count from 1,
via 2, up to 3, and up to, say 1000, with a certain type
of set of rules or whatever. But if we just say, 1, 2, 3,
and up--1, 2, 3, ...,--1,2,3 etc--then we are into an
infinity that does really strange things, new things,--
things that we cannot control in the same way.

You see that 'infinity' comes in not only when we go up
and up and up but also when we ask for something to, as it
were, 'embrace itself' fully.

Enough of infinity for now--let's not over-dwell on it.
But let's just bring with us the sense that if the word
'intelligence' is a deep one, if it means a living and
creative inborn talent we have, in our minds, in our souls
and spirits, to grasp something anew and freshly--and to
grasp even its own flow, its own dance, then intelligence
is something a machine cannot have and so the idea that a
thing made in a human factory or laboratory can have some
kind of 'artificial intelligence' is a misuse of words.
The program may be clever, it may work really well to do
a complicated task. But let's not call it 'intelligent'.

178



G15 PMN PROGRAMMING FOR KIDS

Part C, chapter 6: INTERACTIVITY WITH KEYBOARD

In this chapter, we are going to get one step further with
the game--or, more precisely, with some stuff we need for
the game. We are soon there, but in this first volume of
the Art of Thinking--before you launch yourself into a
full study of all the upcoming volumes and other books of
mine--we should touch on a couple of themes, including how
to make nice curves on the screen. But to wet your thirst
for the next volume, there we'll handle curves really well
--and we'll use there something called the "AngelPen".
That is a set of simple functions that allows you, with
just a few cards, to make also pretty hefty graphics. It's
a little too much to get into all that in this book, but
you have, with this book, mostly all you need to get on
also with AngelPen and other exciting things as well,
which we then cover, as said, in Vol. 2. And I'll work to
keep the language fairly simple, for most of the parts of
the chapters, anyway, also in the next volumes. (A few of
the chapters--but they will tell in the beginning of them
--are clearly for adults, in that you must have a command
of the English language more typical for those who are
past their teens. But that's only for a few of the
chapters, okay?)

Before we get to the game-relevant bit,--the 'coding', as
we can call it, can we think together about what it takes
to make a well-working program? I mean, how should we

lay it out on the cards, how should we name it--how should
we design it,--you follow? I don't mean technically,

179



G15 PMN PROGRAMMING FOR KIDS

right now. I mean--think of yourself as an artist, also
when you code. Now what kind of artwork is a good program?

Is it open? Is it closed? Is it dancing? Slender? Graceful
and elegant? Is it heavy?--no, it's not heavy. You want
every part of a program to be light-footed, and not dense
with indechiperable complicated unnecessary stuff. It is,
it has to be, slender. Not too long, not too wide. It has
to have some elegance, some dance about it. Right? The
more cards you make, the more likely it is that the
program will be interesting also for others to look into,
someday. Then, the more you have managed to divide it up
into meaningful small portions, with nice uplifting and
meaningful names, and just the right amount of comments to
clarify here and there--the more it communicates something
to others. And to yourself, too, when the program takes
time to make.

A beautiful program is interesting to work with: beauty
attracts attention quite naturally. You don't want to look
too much away from beauty in daily life. And so a fit,
well-trained, slender, graceful program attracts attention
and that means that the programmer is doing a work that
calls on more of herself in the whole working flow.

Some might object that this idea of 'slender being more
beautiful' is something that has to do with culture, it is
only an idea we have, and that 'fat can be just as
beautiful'. But the point about the healthily skinny body
is that all its features can participate in the movement--
because there are nerves, muscles, bones, and so on, not
just fat that packages it all into a bubble-like form.

In the programming world, lots of comments, lots of
unnecessary variables, lots of unneccessary extras in each
function--that is all about 'fat programming'--and we must
avoid fat programs and make slender programs, beautiful
programs.

So in G15 PMN, it's really easy to start making new
programs--new functions--you just write whatever= and keep
on writing it and then write a dot . when done with it.
And part of the reason it is so easy to start making new
functions is to encourage you to make many small meaning-

180



G15 PMN PROGRAMMING FOR KIDS

ful slender graceful functions as you build up a program
as a whole. Then it will be as a dance scene, many
beauties acting together. You can get fond of functions--
yes, some of them can even be as close companions!

So to the game. We want what they call an 'interactive'
program--it is active, and it is being active together
with your activity--inter-active--active together, active
'in between you'. So we need to look at how we do this
type of thing really well. How can we for instance read
something from the keyboard that the game-player is doing
with the keyboard, while not stopping the program from
pushing the spaceship around on the screen? This is simple
to do once we know how. We just need to use what we
already know a bit cleverly.

You may remember that we have already used 'ck'--"Check
the Keyboard"--in some place where we had some kind of
loop where we used the mouse. This 'ck' gives a simple '1'
or '0' depending on whether a key is pressed. We used it,
in some chapter or another, simply to get the program to
exit when we press any key.

The clue, to use both keyboard and the mouse to steer
stuff when a loop goes on is to combine the use of ck with
something that reads the particular key pressed, such as
'ki'. But the point is this: only call 'ki'--which we can
think of as "Keyboard Input"--when 'ck' has signalled that
a key indeed has been pressed. Then 'ki' will pick the key
up (and if the game player has pressed many keys very
rapidly, the 'ki' will read one-by-one in the right way--
for, as we say in tech-language, the keyboard is
'buffered'--in that way, a slow program or a slow PC will
be more acceptable to a rapid typer--no keyboard presses
are lost in empty space).

So you call 'ck' again and again, inside the loop, a
loop which also calls such as 'md' to read from the mouse.
Each time 'ck' gives 'l', but only then, we call 'ki'. In
that way, the loop will keep on flying and the game or
whatever it is will keep on making the dazzling movements
on the screen, while the program will respond, will handle
the keyboard input.

181



G15 PMN PROGRAMMING FOR KIDS

Let's put this idea to a very simple test. In this pair
of cards, we ignore the mouse, we simply want the program
to exit when the <ESC> button is pressed--which, by the
by-now-famous "Ascii" list some chapters earlier on was
given the number "27"--a number which is said to be
associated with "completing things".

And each time the keyboard is pressed, we want something
to happen on the screen. Let's say, the screen gets blank
and the Ascii number of the is put to the screen. Very
simple, but it illustrates the idea.

So, if you like, put these two cards to i:1 and i:2 and
have nothing (what we also call 'the nilcard') as i:3, and
I'll quickly run through how it works:

catchher= ce
sh
ki
SX ix
ix makenumber
27 100
eq 100
n? bx.
And i:2:

easydoesit= f
dance n?
11:1 se
ck

ex
se

ql
catchher lo.

Let's check how it works before I go through them. Just do
the normal 'il' then 'cc' at the Terminal, then type the
name of the function and press lineshift. The name is, in
this case, 'easydoesit'.

So each time you press a key, the display shows neatly
what number it has--Ascii key for letters, digits, normal
visible signs. Then it also gives numbers for function
keys, most are well above 250, but lineshift, <TABL> and
such are under 32. And as you press <ESC>, it shows 27,
and the program is done!

182



G15 PMN PROGRAMMING FOR KIDS

And how does it work?

'Easydoesit' starts by putting 'dance'--which is the
start-number 'l'--on the stack.

Then the loop starts. It is the loop of the LL:1 kind
that has a 'qgl' in it, so it keeps on and on. In each run
of the loop, 'ck' is called--keyboard checking, right?

Each time the keyboard is pressed, 'catchher' is called.

The 'se' only does the next command and only when it is
'l' as input to it, so when keyboard is not pressed, the
'catchher' isn't started. Okay?

Then the 'f' makes a copy of what is on the stack. To
begin with, that's surely 'l'. Then 'n?' changes a '1'
into a '0', or a '0' into a 'l'. It means that when that
which is on the stack has changed into 0, the 'ex' will
get done. The 'ex' exits the program.

So, clearly, the 'catchher' takes away one number from
the stack and puts a '0' there when <ESC> is pressed.
Let's see how it does it--first the 'sh', which takes away
one from the stack.

Then 'ki' and 'sx', meaning that the key pressed--the
number of it--will be stored. The 'sx' stores it in 'ix',

right?
Then '27' followed by 'eq' and then 'n?'--all after the
'ix', which brings back the number of the key pressed-- s

this compares with <ESC>, which is number 27, and 'n?’'
switches around the result. So when it is <ESC>, it will
be '0' on the stack. Which is what we want.

In the right column of i:1, the 'ix' is used again. This
time, 'makenumber' is called. That is a function which is
talked about in the texts for the Third Foundation--what
it does is very simple: it turns the number on the stack
into a quote, so that the functions, such as 'bx', that
wants a quote, can be used to show numbers.

So 'makenumber' means, really, 'make a number quote'.

Then the position '100' and '100' is picked to show it
with 'bx', that is the way to 'eXpress it with B9font'.
The screen is cleansed by the 'ce' or 'Clear Entire
screen', before 'bx' is used. So that's card i:l.

When you have tried 'easydoesit' you will notice that,
on the stack, there is a number still. Type

183



G15 PMN PROGRAMMING FOR KIDS

nn
just after running the program once and it will be a 0
there. That's because the 'ex' just exited the program
without the cleansing of the stack first. How do we get
the program fixed so it cleanses up the stack?

That's easy.

We'll make use of a friend of 'se', called 'd2'. It is a
funny friend. For when 'se' does the next command when it
gets a 'l', and not when it gets a '0', 'd2' is opposite.
So a way to remember what 'd2' does is this: 'distract
attention away from the next two commands when it gets 1.'

You follow? Distract--ie, look somewhere else, when it
has got a 'l'. So d2 is about the next two lines. You can
use any of d2..d8, to vary the amount of commands, and
there's even a 'dh' for a 'wHole card'. Be sure that all
of these, like 'se', only wants simple commands, two or
three-letter functions there--no funny things like LL: or
numbers or quotes or the like.

Shall we try it? Make sure i:4 has nothing on it--that
i:4 is a 'nilcard', in other words--and put this to i:3:

easydoesit3= f
dance
11:1 d2
ck
sh
se ex
ql
catchher lo.
And start up the terminal, type 'il' and 'cc' and then
'easydoesit3'. It is exactly the same program, only that

this cleans up really neatly, right?

So you see, right before 'd2' was used, we dropped the
'n?'. That's the big easy way to switch between 'se' and
such as 'd2': add or remove a 'n?'!

And just before the 'ex' we inserted 'sh'. You see how
it all works out really nicely!

184



G15 PMN PROGRAMMING FOR KIDS

Part C, chapter 7: THE LOVELINESS OF WAVES

How important are waves to you? If you think about it,
there are waves--in one ways or another--absolutely
everywhere where there is life.

Waves on an ocean never cease to dazzle, right? If you
pay them attention, you'll see that, responding to winds
and deeper ocean currents and objects in the water, they
can vary just about endlessly.

What mood do they put you in? Waves on water always tend
to level out. That's a bit like music that soothes or is
even slightly sad; but the waves are so grand, they put
everyone in a state of something at least near the
meditative.

Now there are so many many more kinds of waves. Anything
that more or less has a rhythm is some kind of wave to it.
You have radio waves: sound waves--the waves of dance--the
waves of touching--the waves of sexuality--the waves of
exercise--and the wave-like formations, so quickly broken
of flames and fire--and other types of waves, such as the
effects of food on your palate as you eat, and your hunger
and thirst are stilled, and shifted, so that the initial
hunger passes away--but some other, smaller hungers and

185



G15 PMN PROGRAMMING FOR KIDS

thirsts may then arise. And there are the mental waves,
the brain waves, if you like--and waves of feeling: and
the telepathic waves--you name it!

No wonder then, that for as long as there has been
addition and multiplication and numbers, people have
thought about waves, and sought to find the 'essential
wave'. You may already know a little or a lot of what is
called 'trigonometry'--you know how sides of triangles of
various shapes are compared. How a triangle where one
angle is right or 90 degrees or how we call it--90
degrees may also be talked about as 'a quarter of a full
circle', which again may be talked about as 'a quarter of
two pi', or 'half a pi'--such a triangle has features such
as the 'squares of each of the lengths of the shorter
sides adds up to be equal to the square of the length of
the longer side'. Square, as you may know, is to
multiply something with itself. Going the other way is
'square root'.

So all this has been part of numerical thinking for as
long as there has been humanity, I think it is right to
say. And in designing anything really grand, it's good to
have a sense of what comes out easily as 'essences',6 as
'cores', as basic knowledge.

A famous type of curve is called 'the sine curve', and
equally famous, about, is the 'cosine curve'. Wanna have a
look? They are very simple functions when inside G15 PMN:
just give them any number between 0 and 'tp' or 'two pi',
which is, the way we calculate when we do it without
decimal numbers, is anywhere from 0 to 62832; and they'1ll
produce a number anywhere from -10000 to 10000 (or, as we
also say in G15 PMN, from !10000 to 10000).

These curves are usually drawn up so that at increasing
vertical values, we go up on the screen. To turn around a
value that goes this way to our own screen values can be
done by taking 767 and substracting the y value. We can
also use a ready-made function called 'yp', which does
that job for us.

I have added 10000 and some more to get only positive
values here: and then added some more so as to get a
pleasing effect of putting the curve elegantly rather in

186



G15 PMN PROGRAMMING FOR KIDS

the middle of the screen. To find the exact numbers, I
experimented, changed the program, did REB many times, and
gradually found numbers that produced a pleasing result.
In the next cards, you just have to change one single
line--where it says 'si'--the PMN two-letter command for

'SIne wave'--into 'cs'--'CoSine wave' to vary between the
two.
So here's i:1--I'11 go through i:2 and i:2 afterwards:
plotthis= il
|in:into, from 100
14000 rd
ad
s2 i2
50 35
ad rd
sl yp.

And i:2--note that the line that says 'si' could say 'cs',
and in that way you shift between sine waves and cosine
waves. (They're pretty much the same except they start at
different places in their 'waving'.)

elegance= ix

ce ml

tp mm

800 f

rd |Try cs or si:
SX si

plotthis

11:800 lo.

And finally, you can add this to i:3 (be sure i:4 is fully
empty--that it has only 'nilchars'), so the program starts
automatically after you have done the '"il' and the 'cc':
&elegances&
z2z
Does it work? Pretty neat, right? And here's the
explanation:

Let's begin with 'elegance', since it is the top-level
program. It does a loop, as we see, and in each loop it
calls on 'plotthis'--the card before it. So we tackle i:2
first then i:1l.

Step by step: the 'elegance' first calls 'ce', to Clear

187



G15 PMN PROGRAMMING FOR KIDS

the Entire screen. Right? We know that from earlier
chapters.

Then read the next four commands together: 'tp' is two
pi, or one full circle. Then '800' and 'rd' and then the
result of this is stored by 'sx' (so we can later get to
it by 'ix'). Now 'rd' is almost exactly the same as 'di‘',
except that it does 'Rounded Division'. It is a small
variation of 'di', which does a little bit extra
calculation (with the help of 'mo', in fact), so that it
tries to get 'as good result as possible' by not always
rounding down, but sometimes rounding up, if you know what
I mean.

So 'tp'--one full range for the sine curve, or the co-
sine curve--is chopped up into 800 parts. That's a fairly
meaningful number, is it not?--given that the screen size
of a typical G15 PMN PC is 1024 x 768.

It follows that LL:800 makes a loop of 800. We see the
LO or 'lower' part of it to the bottom of the right
column.

Alright, the rest of i:2 is really simple: get the
counter value of the loop--the 'il' we've seen so many
times by now--or, rather, the 'ml' which is one less than
'il' so it starts exactly at zero, at basis--and multiply
it by 'mm' with the little chopped-up-circle part as we
stored in 'ix'.

We 'forge' a copy of this value by 'f', then call the
very sine wave function 'si'. This leaves a result on the
stack. So now we have two values on the stack--what we
gave to 'si', and what came out of it--and with these two
values we call 'plotthis', and the program does what we
instructs it to do on card i:1l.

At i:1, then, 'plotthis' tosses these two values around
quite a lot before 'yp' is called to put a pixel on the
screen. Just where on the screen I fumbled with a little
bit before reaching just that which we have there.

Often, when we have two numbers coming into a function,
you'll see something like

s2
sl
Or it can start at 's3' when we have three numbers coming

188



G15 PMN PROGRAMMING FOR KIDS

into a function. This is because of the 'LIFO' we talked
about quite early in the book: last in, first out. So the
second number is the first out and we can, for simplicity,
put it into 'i2'. The first number is the last out and we
can put it into 'il'.

But here I add something to the numbers just before they
are stored. It's just a convenience, you can do it in so
many other ways,--you can add after you have stored them,
or you can store them other places, or just shift them
around on the stack and not bother about storing them if
you're so inclined. There are just so many ways of making
every G15 PMN program.

It is, however, good that you see some variations as to
how it can be done so that you get better at reading other
people's code and so forth.

The exact numbers of i:1 matters little as long as x is
finally made to fit within about 0 to 1023 and y is made
to fit within about 0 to 767, right? So in i:1 the
numbers are divided, both of them are divided, since they
are quite huge. And the hugest, of course, is the first of
the two numbers, stored in il--which is the same as is
given to 'si' or 'cs'--it can go up over 60000. In
dividing on 100, we get it to go up to a little over 600,
and that suits our purposes.

The second number can go up to 20000 or so. In having
added some thousands to it, we 'lift' the curve from the
bottom of the screen. And the division here is only 35.

Then 'yp' is called, which expects x and y on the screen
in the up-side down way, so that the classical sine curve,
and then--if you change card i:2--the classical cosine
curve--gets to be shown.

This sort of curve is used all the time when more shall
we say 'chaotic' curves are made, eg with the 'angelpen'
functions we'll talk about in the next volume.

It goes without saying (again) that your own learning
process can get speedy improvement when you make this and
that little adjustments of the programs. What I give here
you can use as starting-points. Think before you change
the program in each case and don't sweat over it if it
behaves suddenly absolutely without apparent meaning:

189



G15 PMN PROGRAMMING FOR KIDS

programs are like that sometimes. And it's not always
worth it to figure out exactly why a crazy behaviour is
taking place: rather, put the program back in order and
then do a more careful adjustment.

Part C, chapter 8: THE BEAUTY OF FIRST-HAND PROGRAMMING

We're rapdily moving towards the last pages of this first
volume and in the next chapter, the very last one, we'll
have our game. It will be a somewhat longer chapter but I
think we can consider all of it, or at least most of it,
a repetition--apart from the game itself, exactly how it
is put together. Apart from a few simple-to-explain
commands, we already know all we need to know to get a
simple game up and flying. And then you can modify it
further to make it truly your own, if you wish.

In the next volume, a series of new exciting (I hope)
themes are explored. One of them is about how to speed
up something that for the PC is time-consuming when done
as three-or-more-letter commands--you'll see how we can
make a new two-letter command that goes several times as
fast--good for games with a bit of complex graphics.

Now, as a kid, if you have spent time with this book,
you have already heard me say 'first-hand' several time.
And the first volume in a series called "Art of Thinking"
simply have got to have something more about this theme

190



G15 PMN PROGRAMMING FOR KIDS

before we've done--even if it is slightly complicated. So
bear over with me a discussion about it--it'll pay off
later, as you come further with all the things you are
presently learning more about.

And because there's more programming than usual in the
next chapter, we don't have to include any programming in
this chapter. So in that sense, we can have a somewhat
easier time. Just relax and climb your winged horse, your
pegasus, and let it fly where it wants to.

I'll talk about 'first-hand' by first talking about what
is definitely not 'first-hand', by a series of examples,
not just from programming. Then we'll see this theme
better together.

First, imagine a child who is so in her attitudes that
every time she scratches her knee or foot or hand a little
bit, she runs to an adult and let the adult do whatever is
done to help healing the scratch. She has no idea how to
handle the scratch herself--she never wants to look at
it--and she never learns about it. Imagine that when she
grows up, she still has that attitude--it starts getting a
bit silly, right? That's having a 'second-hand' attitude
to your own body: another's hand, a 'second hand', has to
come in whenever there is anything to heal.

Then let's imagine that a child is the same way when it
comes to handling disappointments. Whenever there is any
even slight disappointment, the child runs away to some
adult and have to have a story told or something so she
forgets about the disappointment. She refuses to look at
her own mind, her own feelings, her own thoughts, and so
she doesn't learn about her mind, how to be more flexible
and more free from expectations,--and imagine that she is
still this way when she's an adult. That's having a
'second-hand' attitude to your own mind. Not very
practical, right?

So the child who has a first-hand relationship to own
body helps in the healing and gradually does it herself;
and she who has a first-hand relationship to her own
disappointments, and so forth, gradually learns how to
calm herself without running away and having to listen to

191



G15 PMN PROGRAMMING FOR KIDS

others all the time.

Then imagine a whole society in which nobody is really
doing programming--not even those who say that they are
doing 'coding' or programming--except a tiny group. That
tiny group tells the rest that all they have to do is to
write some words, and the computer does at once amazing
things that nobody understands anything of--such as making
a flashy image of a rotating human being. The little group
programmed on this rotating human being, the '3d' as they
call it, for years and years and it is a program as long
as the thickest book you can imagine and they are telling
others that if they just start up this program, they are
programmers themselves. See the funny business here? See
how it is fishy? All of society, when they are taught
programming in such a 'second-hand' way, gradually becomes
stupid. For instead of working with numbers and pixels and
loops, they are handed over some words so as to call
something ready-made, something cut and dried, put in a
box, ready to be used but not ready to be understood.

The tiny little group have probably lost overview over
just how they made their fancy programs: they, too, in the
process, have become 'second-hand programmers'. So one day
when something doesn't work, nobody understands anything
anymore. Right? And in the meantime, instead of using
computers, Personal Computers, PCs, as part of education,
society has begun putting their minds--or their lack of
mind--"over" to the PCs, over to the computers, small or
big,--and so they have become more second-hand in all
sorts of way.

So a whole society can fall apart in a thousand ways
when this enormous theme of first-hand programming is
ignored. The people who are in love with second-hand
programming may say such as "it is more efficient if just
a few makes the big programs, and everyone else just uses
them". But is it so?

And so, you see, the very phrase "first-hand
programming" grew out of my phrase "first-hand
relationship to data", which I coined when I released the
first forms of the computer language that eventually
became G15 PMN (it was then called Firth, among other

192



G15 PMN PROGRAMMING FOR KIDS

things).

First-hand programming, then, is what you now have
opened up to, if you hadn't opened up to it before--simply
by working with this book. Of course it's natural and
delicious to use big programs that others have made and
you can still be a first-hand programmer: but as a first-
hand programmer, you will be a little sceptical to
absolutely gigantic programs that contain lots and lots of
stuff that probably nobody really understand excepts in
bits. You will like a bit smaller programs even when they
give a little more work--when they are made so that you
yourself can go into every it of them and know that, at
least in principle, you can get a grip on them.

All right: you can take this as a starting-point for an
imagining of several alternative societies, how they
develop in the coming millenia, when first-hand
programming is taught to all--and when it is not practised
at all--and variations in between. Read science fiction
and make your own science fiction and you see the
magnitude of the questions! And so, by looking ahead not
just to your bodily life right now, but by looking ahead
to how humanity develops over the centuries, you'll find
that your decisions, your own actions, have all sorts of
effects. Nothing is wiped out: even if very few actions
have your name-tag attached to them, they do go into the
flow of events and things are affected. The phrase for
this you may have heard: 'butterfly effects'--the idea is
that the tiniest little changes of wind can have enormous
influence on the future's weather and, by that, also on
society, and that the influence is greater the longer you
look into the future. This sort of idea was worked out in
a branch of thinking called 'chaos theory' and computer
modelling of wheater helped a lot.

I have promised that there is no programming in this
chapter and it won't be. Just one little 'useful thing'

and we're done!

===>USEFUL THING TO KNOW: HOW TO CHECK IF A CARD IS EMPTY

193



G15 PMN PROGRAMMING FOR KIDS

A card may look empty if we open it, and still it may have
some data in it. A very good example of this is how such
as the Gem image editor stores images: it uses really huge
numbers, numbers that are so big that it is out of the
question that they are within the range that shows as
letters and digits and such. So here's how to check if you
have got a really empty card, what we call a "NIL CARD",
or whether it has got something on it after all. Open the
first card of the image that the B9Edit editor is showing,
the smiling girl at the beach in bikini. The first card is
d:10000. Go to that card by <CTR>-L and type in 'd10000°'
and press <ENTER>.

Now that card could be a nil-card. But if you go to the
menu-mode--press <CTR>-W and you're in menu mode--and
click on the various squarish signs on that card, you see
that behind those signs are really grand numbers. Each
number has information about several green-tones, packed
together. A real NIL-card has zero (basis), '0', in all
the places. So d:10000 is an example of a card that has
data and that, since it's part of the G15 PMN system,
should be left as it is.

Part C, chapter 9: FINALLY, YOUR OWN GAME!
Everything in the game we are making here is discussed in

the various chapters in this book, and a lot more is
discussed in them, of course--and yet we'll go through

194



G15 PMN PROGRAMMING FOR KIDS

the cards of the game, so that we refresh our knowledge.
And this game is then small enough and simple enough and
well enough explained that you can work with it and change
it and make new things and eventually grow your own
beautiful game and show it to the world.

You don't have to type it in--these 35 cards, plus the
spaceship sketch we've already put on a card some chapters
ago--are all in app #5850001. The object of the game is to
steer a very wiggly 'ship' so that it removes all of a
triangle that covers much of the screen, in as few seconds
as possible. It's charm is in its wiggliness, its utter
simplicity--echoed in the few cards to keep it going--and,
as a consequence, in that it is easy to expand on any way
you like.

I'll give the 35 cards first, then explain. These almost
fulfill the promise of not introducing any new element at
all. The new PD element is the predefined two-letter word
"TL"--"Timing Listening"--which, when divided on 1000,
tells you the quantity of seconds of the computer clock.
When you want to know the quantity of seconds since game-
startup, just call TL and put the value somewhere--then
call it again and again and each time substract the first
value from the second and divide on thousand and that's
it--that's the number of seconds--and this number we show
on the screen.

In addition we call on a function--very simple to call--
done on card i:15--which shows a triangle on the screen.
However easy it is to call, it takes up quite a few cards
in the Third Foundation to make it! It's called
'newtriangle'--I'1ll explain it briefly afterwards.

Here are the 35 cards, and explanations for anything that
isn't already explained in the earlier chapters are
talked about afterwards.

<il>

| Pedagogical | Sketch is at
|minigame; Art |this card:j:1

195



|of Thinking
|vol 1 by; Use
| arrows : how
|quickly can

| you remove
|triangle? :-)

<i2>
gameintrol=

A
.

longtxt*

Hi! Mini-game

you can expand
yourself!

Use arrows &
*txtcomplete

<i3>
gameintro2=

A
.

longtxt*

press <esc> th
e instant you
have removed t
he triangle.
*txtcomplete

<i4>
gameintro3=
longtxt*
Goal: to do it
in as few sec
onds as possib
le.
*txtcomplete

<i5>
gameintrod=

A
.

196

|By Aristo;

| To save you
|typing it in,
|it's also app
| #5850001 at

| the app page!

cliptrail

gameintrol
kl

cliptrail

gameintro2
kl

cliptrail

gameintro3
kl

cliptrail

G15 PMN PROGRAMMING FOR KIDS



longtxt*

It will tell s
econds. Type
qu when done.

*txtcomplete

<ié6>
sayintro=
ce
gameintrol
1k

10

10

bx
<i7>

gameintro3
1k

10
70

bx

<i8>
spaceship=
300

sz

&&

spaceship
kl

<i9>

getstars=
spaceship

197

gameintro4
kl

gameintro?2
1k

10
40

bx

gameintro4
1k

10

100

bx

ki
sh.

29
8
spaceship

wwyymatrix

1lc
sd

G15 PMN PROGRAMMING FOR KIDS



G15 PMN PROGRAMMING FOR KIDS

1k
tx
|Disk/card:
10
1 11:8
rr 11:29
<ilo>
i4 m2
1k ml
42 ix
Yy
eq
h4
255 lo
mm lo.
<ill>
showtheship= |to show the
|in:v, %, ¥y |ship; v is
| acton:shows |basis to draw
| the ship |only black

|at screen pos |to hide it
|horisontal x, s9

|vertical y;  sx

|v is dance s5
<il2>

spaceship 11:8
1k 11:29
tx

<il3>

m2 m2

ix ml

198



ad

ml
i9
ad

<ild>
matrfield

lo
lo.

<il5>
ourtriangle=

|action:shows

|a triangle

<ilé>
xposship=
yposship=

<il7>
varyshippos=

ix

i5

255

10

15

135

8

50

85
newtriangle.

plusminuséd=
|in: numl
|gives: num2
9

af

5

su

ad.

w

|in:variationx xposship

199

G15 PMN PROGRAMMING FOR KIDS



| variationy

| {eg 10, !10}
yposship

1k

ad

plusminus4

<il8>
125
nowwithin

1
nolessthan

xposship
kl

<il9>
convertkeyxy=
|in: keynum
|gives:

| xvariation
|yvariation

| {if other

| than arrow:
|basis,basis}

<i20>
i9

| llupll :
273

eq

n?

d4

<i21>

i9

| "right":

200

1k
ad

plusminus4
90
nowwithin

1
nolessthan

yposship
k1.

s9

basis

ten
ts

ex

ten

G15 PMN PROGRAMMING FOR KIDS



G15 PMN PROGRAMMING FOR KIDS

basis
275
eq
n?
d3 ex
<i22>
i9 ten
| "left": ts
276 basis
eq
n?
d4 ex
<i23>
i9 basis
| "beneath":
ten
274
eq
n?
d3 ex
<i24>
basis
basis.
<i25>
movetheship= basis
|in: keynum xposship

201



|moves ship

| from earlier
|pos to new
|calculated
|position
convertkeyxy

<i26>

<i27>
starttl=

A
.

|This is used
|to calculate
| seconds

<i28>
saytiming=
|action:tells
| seconds on

| screen

tl

sh

starttl

1k

<i29>

getlookatkey=
| in:numl, num2

202

1k

yposship

1k
showtheship

varyshippos

dance
xposship
1k
yposship
1k

showtheship.

| The "t1" is
|a pd that
|gives 2

| numbers; the
| second, when
|divided on

| 1000, gives
|gty seconds

su
1000

rd
makenumber
450

10

rp.

sh
sh

G15 PMN PROGRAMMING FOR KIDS



| gives:keynum,
| keynum

|ie, it

| replaces two
| numbers with
| keyinput

<i30>
coreofgame=

| The main

| Loop of the
| game, finish
|by click on
| resc', which
|is ascii

|27

<i31>

<i32>

|is it esc?
27

eq

n?
se
ql
<i33>

spacegame007=
|starts the

203

ki

ourtriangle
|Set start
|count for
| seconds:
tl

sh

starttl

k1l

11:1
basis
ck

se

getlookatkey

movetheship

25
activepause

saytiming
lo.

| Thinking,vol
|1, by Aristo

G15 PMN PROGRAMMING FOR KIDS



G15 PMN PROGRAMMING FOR KIDS

| simple game, |Tacoma for
|which you |explanations
|can modify getstars
|and expand sayintro
| yourself; see
|Art of ce
<i34>
nowdirectmatr coreofgame
80
xposship
k1l
restoremdraw.
30
yposship
k1l
<i35>
&spacegame007&
z22

That's all! It autostarts the program, called--somewhat
presumptiously--'spacegame007'--all by itself, that's done
in card i:35 via the ZZ command.

On card i:15 the 'newtriangle' is called. Here's how to
call it: in any situation where you can use 'matrfield'--
to draw some squares on the screen with X up to about 140
and Y up to about 90 or some more--X horisontal and Y
vertical as usual--'newtriangle' expects you to give it
tone of the squares that makes it up, followed by X1 Y1,
X2 Y2, and X3 Y3. These X1 Y1 and so forth are the three
points of the triangle. Be sure they are all in range.

On card i:15 you see that the maximum values used there
are 85 and 135. And the minimum values are fairly small.

204



G15 PMN PROGRAMMING FOR KIDS

So this is a triangle going from upper left towards the
right and also extending down. And you erase this triangle
by moving the 'starship' we sketched--pressing the arrows,
fast--but the ship keeps on moving about on its own accord
and so it's up to both skill and chance to actually get
job of removing the triangle done.

In this simplistic game, the player presses ESC as soon
as the triangle has been removed and reads off the seconds
counter as given on the screen. Then 'qu' is typed, and by
a press on <ENTER>, the program exits and can be
restarted.

At i:27 and i:28 the 'listen to the timer', or TL, command
--as already explained--is used.

At i:19 to i:24 the use of the arrows are processed by the
program. Any press on the arrow gives some sort of number,
such as 273 when up-key is pressed, as you can find by
typing 'ki' and press a key and then 'nn' to type it out.

If you recall, we have briefly touched on such as D2,
and the predefined two-letter command D3 and D4 are
identical--they just jump over more than two lines--D3
jumps over 3 lines, and D4 jumps over 4 lines. These
lines must be a word, not a number, and that's why 'ten’
is written rather than '10°'.

At the last card in this function, i:24, it gives
'basis' twice--that's when another key than an arrow-key
is pressed, and there is no variation of X nor of Y. In
all other cases, either X gets 10, or Y, or it gets signed
10. How does it get signed? That's where you see the TS--
'toggle sign'. I think we covered this briefly before in
this book.

Remember that whereas SE--which we have used several
times--processes the next line only when it gets a 'l' as
input, such as D2, D3 and D4, allows the next lines to be
processed only when they get a '0' as input. That's why
there is a 'N?' right after checking each key for a match.
(If you found this last comment somewhat cryptic, don't
worry: when you have time, go back to earlier comments on
SE and D2 and so on in this book and experiment a little

205



G15 PMN PROGRAMMING FOR KIDS

on the terminal.)

The D3 and D4 and so on usually have the command EX as
last in the series of things to be done--this is to make
the function exit after a match on the right key, instead
of going on to check for yet more matches.

Continuing to go through the cards in free sequence, on
i:18 there is the use of Third Foundation words such as
'nowwithin' and 'nolessthan'. These do pretty much as
what they seem to do: the number is 'now within' this
range; the number is now 'no less than' this minimum. So
in this way, we keep the ship from bumping into the sides
of the screen (or, more precisely, we keep the program
from making a mess).

On i:16 there is a new function 'plusminus4' that uses the
idea of a freely fluctuating number to add, or substract,
at most 4 to a number. It's just a little bit of
calculation. You'll work it out.

On i:34 there are some cryptic words, but we have already
mentioned them I think (very briefly): whenever you want a
game with constant update of the graphics like we have it
here, just throw them in right before and right after
running the main function, like this:

nowdirectmatr

..here call the game..

restoremdraw
The alternative is to draw much on the screen but only
show it each time 'approvesketch' is called, and then the
screen will sort of update from top-down instead of in an
interactive way. This sort of stuff is usually not some-
thing even I who wrote these functions inside the Third
Foundation remember as much as just copy--when you start a
new game, find the simplest similar-looking game you can,
copy it, and remove all irrelevant stuff then add new
stuff.

I think that largely covers it. With four more volumes to
come, there will be all sorts of chances to get a

206



G15 PMN PROGRAMMING FOR KIDS

refreshment of memory on the essentials, even as we move
to all sorts of advanced topics.

207



